370,966 research outputs found
The myths and realities of Bayesian chronological modeling revealed
We review the history of Bayesian chronological modeling in archaeology and demonstrate that there has been a surge over the past several years in American archaeological applications. Most of these applications have been performed by archaeologists who are self-taught in this method because formal training opportunities in Bayesian chronological modeling are infrequently provided. We define and address misconceptions about Bayesian chronological modeling that we have encountered in conversations with colleagues and in anonymous reviews, some of which have been expressed in the published literature. Objectivity and scientific rigor is inherent in the Bayesian chronological modeling process. Each stage of this process is described in detail, and we present examples of this process in practice. Our concluding discussion focuses on the potential that Bayesian chronological modeling has for enhancing understandings of important topics
Non-parametric Bayesian modeling of complex networks
Modeling structure in complex networks using Bayesian non-parametrics makes
it possible to specify flexible model structures and infer the adequate model
complexity from the observed data. This paper provides a gentle introduction to
non-parametric Bayesian modeling of complex networks: Using an infinite mixture
model as running example we go through the steps of deriving the model as an
infinite limit of a finite parametric model, inferring the model parameters by
Markov chain Monte Carlo, and checking the model's fit and predictive
performance. We explain how advanced non-parametric models for complex networks
can be derived and point out relevant literature
Probabilities in Economic Modeling
Economic modeling assumes, for the most part, that agents are Bayesian, that is, that they entertain probabilistic beliefs, objective or subjective, regarding any event in question. We argue that the formation of such beliefs calls for a deeper examination and for explicit modeling. Models of belief formation may enhance our understanding of the probabilistic beliefs when these exist, and may also help up characterize situations in which entertaining such beliefs is neither realistic nor necessarily rational.Decision making, Bayesian, Behavioral Economics
- …
