174,436 research outputs found

    Adaptation of speaker-specific bases in non-negative matrix factorization for single channel speech-music separation

    Get PDF
    This paper introduces a speaker adaptation algorithm for nonnegative matrix factorization (NMF) models. The proposed adaptation algorithm is a combination of Bayesian and subspace model adaptation. The adapted model is used to separate speech signal from a background music signal in a single record. Training speech data for multiple speakers is used with NMF to train a set of basis vectors as a general model for speech signals. The probabilistic interpretation of NMF is used to achieve Bayesian adaptation to adjust the general model with respect to the actual properties of the speech signals that is observed in the mixed signal. The Bayesian adapted model is adapted again by a linear transform, which changes the subspace that the Bayesian adapted model spans to better match the speech signal that is in the mixed signal. The experimental results show that combining Bayesian with linear transform adaptation improves the separation results

    Statistical methods for linguistic research: Foundational Ideas - Part II

    Full text link
    We provide an introductory review of Bayesian data analytical methods, with a focus on applications for linguistics, psychology, psycholinguistics, and cognitive science. The empirically oriented researcher will benefit from making Bayesian methods part of their statistical toolkit due to the many advantages of this framework, among them easier interpretation of results relative to research hypotheses, and flexible model specification. We present an informal introduction to the foundational ideas behind Bayesian data analysis, using, as an example, a linear mixed models analysis of data from a typical psycholinguistics experiment. We discuss hypothesis testing using the Bayes factor, and model selection using cross-validation. We close with some examples illustrating the flexibility of model specification in the Bayesian framework. Suggestions for further reading are also provided.Comment: 30 pages, 5 figures, 4 tables. Submitted to Language and Linguistics Compass. Comments and suggestions for improvement most welcom

    Bayesian Model Comparison in Genetic Association Analysis: Linear Mixed Modeling and SNP Set Testing

    Full text link
    We consider the problems of hypothesis testing and model comparison under a flexible Bayesian linear regression model whose formulation is closely connected with the linear mixed effect model and the parametric models for SNP set analysis in genetic association studies. We derive a class of analytic approximate Bayes factors and illustrate their connections with a variety of frequentist test statistics, including the Wald statistic and the variance component score statistic. Taking advantage of Bayesian model averaging and hierarchical modeling, we demonstrate some distinct advantages and flexibilities in the approaches utilizing the derived Bayes factors in the context of genetic association studies. We demonstrate our proposed methods using real or simulated numerical examples in applications of single SNP association testing, multi-locus fine-mapping and SNP set association testing

    Generalized fiducial inference for normal linear mixed models

    Get PDF
    While linear mixed modeling methods are foundational concepts introduced in any statistical education, adequate general methods for interval estimation involving models with more than a few variance components are lacking, especially in the unbalanced setting. Generalized fiducial inference provides a possible framework that accommodates this absence of methodology. Under the fabric of generalized fiducial inference along with sequential Monte Carlo methods, we present an approach for interval estimation for both balanced and unbalanced Gaussian linear mixed models. We compare the proposed method to classical and Bayesian results in the literature in a simulation study of two-fold nested models and two-factor crossed designs with an interaction term. The proposed method is found to be competitive or better when evaluated based on frequentist criteria of empirical coverage and average length of confidence intervals for small sample sizes. A MATLAB implementation of the proposed algorithm is available from the authors.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1030 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore