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While linear mixed modeling methods are foundational concepts
introduced in any statistical education, adequate general methods
for interval estimation involving models with more than a few vari-
ance components are lacking, especially in the unbalanced setting.
Generalized fiducial inference provides a possible framework that ac-
commodates this absence of methodology. Under the fabric of gener-
alized fiducial inference along with sequential Monte Carlo methods,
we present an approach for interval estimation for both balanced
and unbalanced Gaussian linear mixed models. We compare the pro-
posed method to classical and Bayesian results in the literature in
a simulation study of two-fold nested models and two-factor crossed
designs with an interaction term. The proposed method is found to
be competitive or better when evaluated based on frequentist crite-
ria of empirical coverage and average length of confidence intervals
for small sample sizes. A MATLAB implementation of the proposed
algorithm is available from the authors.

1. Introduction. Inference on parameters of normal linear mixed models
has an extensive history; see Khuri and Sahai (1985) for a survey of vari-
ance component methodology, or Chapter 2 of Searle, Casella and McCul-
loch (1992) for a summary. There are many inference methods for variance
components such as ANOVA-based methods [Burdick and Graybill (1992),
Hernandez, Burdick and Birch (1992), Hernandez and Burdick (1993), Je-
yaratnam and Graybill (1980)], maximum likelihood estimation (MLE) and
restricted maximum likelihood (REML) [Hartley and Rao (1967), Searle,
Casella and McCulloch (1992)] along with Bayesian methods [Gelman (2006),
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Gelman et al. (2004), Wolfinger and Kass (2000)]. Many of the ANOVA-
based methods become quite complex with complicated models (e.g., due
to nesting or crossing data structures), and are not guaranteed to perform
adequately when the designs become unbalanced. When the model design
is not balanced, the decomposition of the sum-of-squares for ANOVA-based
methods is not generally unique, chi-squared or independent. Furthermore,
“exact” ANOVA-based confidence intervals are typically for linear combi-
nations of variance components, but not the individual variance compo-
nents even for simple models [Burdick and Graybill (1992), pages 67 and 68,
Jiang (2007)]; however, approximate intervals do exist. With notable opti-
mality properties for point estimation, MLE and REML methods are less
useful when it comes to confidence interval estimation for small samples be-
cause the asymptotic REML-based confidence intervals tend to have lower
than stated empirical coverage [Burch (2011), Burdick and Graybill (1992),
Searle, Casella and McCulloch (1992)]. Bayesian methods, in particular, hi-
erarchical modeling, can be an effective resolution to complicated models,
but the delicate question of selecting appropriate prior distributions must
be addressed.

There are numerous applications of normal linear mixed models related
to topics such as animal breeding studies [Burch and Iyer (1997), E, Hannig
and Iyer (2008)], multilevel studies [O’Connell and McCoach (2008)] and
longitudinal studies [Laird and Ware (1982)]. Many implemented methods
do not go beyond two variance components or are designed for a very spe-
cific setting. We propose a solution based on generalized fiducial inference
that easily allows for inference beyond two variance components and for the
general normal linear mixed model settings.

The proposed generalized fiducial approach is designed specifically for in-
terval data (e.g., due to the measuring instrument’s resolution, rounding for
storage on a computer or bid-ask spread in financial data). There are several
reasons to consider interval data. First, there are many examples where it
is critical [or required per the regulations outlined in GUM (1995)] to incor-
porate all known sources of uncertainty [Elster (2000), Frenkel and Kirkup
(2005), Hannig, Iyer and Wang (2007), Lira and Woger (1997), Taraldsen
(2006), Willink (2007)]. Second, our simulation results for the normal lin-
ear mixed model show that even when considering this extra source of un-
certainty, the proposed method is competitive or better than classical and
Bayesian methods that assume the data are exact; see Section 3. [The pro-
posed method is also appropriate for noninterval, or standard, data simply
by artificially discretizing the observation space into a fixed grid of nar-
row intervals; Hannig (2012) proves that as the interval width decreases to
zero, the generalized fiducial distribution converges to the generalized fidu-
cial distribution for exact data.] Finally, on a purely philosophical level, all
continuous data has some degree of uncertainty, as noted previously, due to
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the resolution of the measuring instrument or truncation for storage on a
computer. Note that we are not suggesting that all methods should incorpo-
rate this known uncertainty; however, we were able to appeal to this known
uncertainty for the computational aspect of the proposed method.

A general form of a normal linear mixed model is

Y =Xβ +VZ + ε,(1.1)

where Y is an n× 1 vector of data, X is a known n× p fixed effects design
matrix, β is a p×1 vector of unknown fixed effects, VZ =

∑r−1
i=1 ViZi, where

Zi is a vector of effects representing each level of random effect i such that
E(Zi) = 0 and var(Zi) =G, Vi is the known design matrix for random effect
i, and ε is an n×1 vector representing the error and E(ε) = 0 and var(ε) =R

[Jiang (2007)]. Note that there are r total random components in this model,
and covariance matrices G and R contain unknown parameters known as
variance components. It is often assumed that Z and ε are independent and
normally distributed. Additional assumptions on this model for the proposed
method are addressed in Section 2.

Except where noted, the notational convention that will be used for ma-
trices, vectors, and single values will be, respectively, bold and capital letters
for matrices, capital letters for vectors and lowercase letters for single values
(e.g., A, A, a).

The focus of this paper is the construction of confidence intervals for the
unknown parameters of (1.1), with emphasis on the variance components
of matrices G and R. In this paper, inferences are derived from the gen-
eralized fiducial distributions of the unknown parameters, and we propose
a sequential Monte Carlo (SMC) algorithm to obtain these samples. Like a
Bayesian posterior, this procedure produces a distribution on the parame-
ter space, but does so without assuming a prior distribution. We evaluate
the quality of the simulated generalized fiducial distribution based on the
quality of the confidence intervals—a concept analogous to confidence distri-
butions [Schweder and Hjort (2002), Xie, Singh and Strawderman (2011)].
We begin by introducing the two main techniques of the proposed method:
generalized fiducial inference and SMC methods. Then we introduce the pro-
posed method, and state and prove a theorem concluding the convergence
of the algorithm. To demonstrate small sample performance, we perform
a simulation study on two different types of models (unbalanced two-fold
nested models and two-factor crossed with interaction models), and include
a real-data application for the two-fold nested model. We finish with con-
cluding remarks. Additional information can be found in the supplemental
document [Cisewski and Hannig (2012)].

1.1. Generalized fiducial inference. Fiducial inference was introduced by
Fisher (1930) to rectify what he saw as a weakness in the Bayesian philoso-
phy, where a prior distribution is assumed without sufficient prior knowledge.
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While Fisher made several attempts at justifying his definition of fiducial
inference [Fisher (1933, 1935)], it was not fully developed. Fiducial infer-
ence fell into disrepute when it was discovered that some of the properties
Fisher claimed did not hold [Lindley (1958), Zabell (1992)]. Efforts were
made to revitalize fiducial inference by drawing connections to other areas
such as Fraser’s structural inference [Fraser (1961a, 1961b, 1966, 1968)], and
more recently Hannig, Iyer and Patterson (2006) connect Fisher’s fiducial
inference to generalized inference introduced in Tsui and Weerahandi (1989)
and Weerahandi (1993). In this paper, we propose a method for inference
on parameters of normal linear mixed models using the ideas of generalized
fiducial inference.

The main idea of fiducial inference is a transference of randomness from
the model space to the parameter space. A thorough introduction to gener-
alized fiducial inference can be found in Hannig (2009), but here we consider
a simple example. Let y be a realization of a random variable Y ∼N(µ,1)
[where N(µ,1) represents a normal distribution with unknown mean µ and
standard deviation 1]. The random variable Y can be represented as Y =
µ + Z where Z ∼ N(0,1). Given the observed value y, the fiducial argu-
ment solves this equation for the unknown parameter µ to get µ = y − Z;
for example, suppose y = 4.8, then µ= 4.8−Z would suggest µ∼N(4.8,1).
While the actual value of Z is unknown, the distribution of Z is fully known
and can be used to frame a distribution on the unknown parameter µ. This
distribution on µ is known as the fiducial distribution.

The generalized fiducial recipe starts with a data-generating equation, also
referred to as the structural equation, which defines the relationship between
the data and the parameters. Let Y be a random vector indexed by param-
eter(s) ξ ∈ Ξ, and then assume Y can be represented as Y =G(ξ,U), where
G is a jointly measurable function indicating the structural equation, and U
is a random element with a fully known distribution (void of unknown pa-
rameters). In this paper, the function G will take the form of a normal linear
mixed model, and the random components U will be standard normal ran-
dom variables; see equation (2.1). Following the fiducial argument, we define
a set-valued function, the inverse image of G, as Q(y,u) = {ξ :y=G(ξ,u)},
where y is the observed data, and u is an arbitrary realization of U . The
set-function Q(y,u) is then used to define the fiducial distribution on the pa-
rameter space. Since the distribution of U is completely known, independent
copies of U , U∗, can be generated to produce a random sample of Q(y,u∗)
for the given data y (where u∗ is a realization of U∗). There are several
sources of nonuniqueness in this framework. In particular, nonuniqueness
could occur if Q has more than one element, if Q is empty, or due to the
definition of the structural equation. Nonuniqueness due to the definition of
the structural equation will not be addressed here as we assume the form of
the model is known (i.e., normal linear mixed model). To resolve the case
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when there is more than one element in Q, we can define a rule, call it V ,
for selecting an element of Q. Furthermore, since the parameters ξ are fixed
but unknown, there must be some realization of the random variable U such
that y=G(ξ,u) has occurred [i.e., {Q(y,u) 6=∅}]. The generalized fiducial
distribution of ξ is defined as

V (Q(y,U∗)) | {Q(y,U∗) 6=∅}.(1.2)

Obtaining a random sample from the generalized fiducial distribution as
defined in (1.2) where the structural equation, G, takes the form of a normal
linear mixed model is the focus of the proposed algorithm.

Defining the generalized fiducial distribution as (1.2) leads to a potential
source of nonuniqueness due to conditioning on events with zero probability
[i.e., if P ({Q(y,u) 6=∅}) = 0]. This is known as the Borel Paradox [Casella
and Berger (2002)]. Fortunately this can be resolved by noting that most
data has some degree of known uncertainty due, for example, to the reso-
lution of the instrument collecting the data or computer storage. Because
of this, instead of considering the value of a datum, an interval around the
value can be used [Hannig (2012), Hannig, Iyer and Wang (2007)]. For ex-
ample, suppose the datum value is y = 1.632 meters measuring the height
of a woman. If the resolution of the instrument used to measure the woman
is 0.001 m (i.e., 1 mm), then her actual height is between 1.631 meters and
1.632 meters (or between 1.632 meters and 1.633 meters, depending on the
practice of the measurer).

By considering interval data, the issue of nonuniqueness due to the Borel
Paradox is resolved since the probability of observing our data will never
be zero since P (Q((a, b),U∗) 6= ∅) ≥ P (Y ∈ (a, b)) > 0 where a < b are the
endpoints of the interval.

Interval data is not explicitly required for generalized fiducial inference,
but is useful in the proposed setting of normal linear mixed models. General-
ized fiducial inference has a number of other applications in various settings
such as wavelet regression [Hannig and Lee (2009)], confidence intervals
for extremes [Wandler and Hannig (2012)], metrology [Hannig, Iyer and
Wang (2007)] and variance component models [E, Hannig and Iyer (2008)],
which applies the generalized fiducial framework to unbalanced normal lin-
ear mixed models with two variance components.

1.2. Sequential Monte Carlo. When integrals of interest are very com-
plex or unsolvable by analytical methods, simulation-based methods can be
used. SMC, or particle filters, is a collection of simulation methods used to
sample from an evolving target distribution (i.e., the distribution of interest)
accomplished by propagating a system of weighted particles through time or
some other index. A solid introduction of and applications to SMC methods
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can be found in Doucet, de Freitas and Gordon (2001). There are many di-
mensions to the theory and applications of SMC algorithms [Chopin (2002,
2004), Del Moral, Doucet and Jasra (2006), Douc and Moulines (2008),
Kong, Liu and Wong (1994), Liu and Chen (1998), Liu and West (2001)],
but a simplified introduction is presented below.

Suppose one desires to make inferences about some population based on
data Y . A particle system {z(J),w(J)} for J = 1, . . . ,N particles is a collec-
tion of N weighted random variables (with weights w(J)) such that

lim
N−→∞

∑N
J=1w

(J)γ(z(J))
∑N

J=1w
(J)

−→Eπ{γ(z)}=

∫
γ(z)dπ(z),

where π is the target distribution, and γ is some measurable function, when
this expectation exists. Since it is often difficult to sample directly from
the target distribution π, it becomes necessary to find some proposal dis-
tribution π̃ to sample the particles. The weights w(J) are determined in
order to re-weight the sampled particles back to the target density [i.e.,
w(J) = π(z(J))/π̃(z(J))]. This is the general idea of importance sampling
(IS). If the target distribution is evolving with some time index, an iterative
approach to calculating the weights is performed. This is known as sequen-
tial importance sampling (SIS). Unfortunately, with each time step, more
variation is incorporated into the particle system, and the weights degener-
ate, leaving most particles with weights of essentially zero. The degeneracy
is often measured by the effective sample size (ESS), which is a measure of
the distribution of the weights of the particles. Kong, Liu and Wong (1994)
presents the ESS as having an inverse relation with the coefficient of vari-
ation of the particle weights, and proved that this coefficient of variation
increases as the time index increases (i.e., as more data becomes available)
in the SIS setting. An intuitive explanation of ESS can be found in Liu and
Chen (1995).

SMC builds on ideas of sequential importance sampling (SIS) by incorpo-
rating a resampling step to resolve issues with the degeneracy of the parti-
cle system. Once the ESS for the particle system has dropped below some
designated threshold or at some pre-specified time, the particle system is
resampled, removing inefficient particles with low weights and replicating
the particles with higher weights [Liu and Chen (1995)]. There are various
methods for resampling with the most basic being multinomial resampling,
which resamples particles based on the normalized importance weights; see
Douc, Cappé and Moulines (2005) for a comparison of several resampling
methods.

Examples of general SMC algorithms can be found in Del Moral, Doucet
and Jasra (2006) or Jasra, Stephens and Holmes (2007). The main idea of
SMC methods is to iteratively target a sequence of distributions {πt}t∈Z+ ,
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where πt is often some distribution based on the data available up to time t.
The algorithm comprises three main sections after the initialization step:
sampling, correction and resampling. The sampling step arises at a new
time step t when particles are sampled from some evolving proposal dis-
tribution π̃t. The correction step is concerned with the calculation of the
weights and the idea of reweighting the particles to target the desired dis-
tribution at time t, πt. The resampling step is performed when the ESS of
the particle system falls below some desired threshold T (e.g., T = N/2).
The asymptotic correctness for SMC algorithms can be found in Douc and
Moulines (2008).

2. Method.

2.1. Introduction. The form of the normal linear mixed model from equa-
tion (1.1) is adapted to work in the generalized fiducial inference setting as

Y=Xβ +

r∑

i=1

σi

li∑

j=1

Vi,jzi,j ,(2.1)

where X is a known n×p fixed-effects design matrix, β is the p×1 vector of
fixed effects, Vi,j is the n× 1 design vector for level j of random effect i, li is
the number of levels per random effect i, σ2

i is the variance of random effect
i and the zi,j are independent and identically distributed standard normal
random variables. We will derive a framework for inference on the unknown
parameters (β and σi, i= 1, . . . , r) of this model, which will be applicable to
both the balanced and the unbalanced case. (The design is balanced if there
is an equal number of observations in each level of each effect, otherwise the
design is unbalanced.) In addition, the covariance matrices for the random
components (G and R above) are identity matrices with a rank equal to
the number of levels of its corresponding random effect with lr = n. The
Vi, i= 1, . . . , r, allow for coefficients for the random effects, and correlation
structure can be incorporated into the model by including additional effects
with design matrices that account for the correlation. We note that these
additional assumptions are related to the implementation of the proposed
algorithm, and are not restrictions of the generalized fiducial framework.

Consider the following example illustrating the connection between (1.1)
and (2.1) in the case of a one-way random effects model. A one-way random
effects model is conventionally written as

yij = µ+ αi + εij , i= 1, . . . , a, j = 1, . . . , ni,(2.2)

with unknown mean µ, random effect α∼N(0, σ2
α) where σ

2
α is unknown, a is

the number of levels of α, ni is the number of observations in level i and error
terms εij ∼N(0, σ2

ε) where σ
2
ε is also unknown, and α and ε are independent
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[Jiang (2007)]. This can be structured in the form of equation (2.1) as

Y =Xβ + σ1

l1∑

j=1

V1,jz1,j + σ2

n∑

j=1

V2,jz2,j ,

where β = µ is the overall mean, X = 1n (an n× 1 vector of ones), l1 = a
is the number of levels for the first random effect and V1,j indicates which
observations are in level j with random effect variance σ2

1 = σ2
α. The second

random effect corresponds to the error, and hence V2,· = In with σ2
ε as the

error variance component. The z1,· and z2,· are the i.i.d. standard normal
random variables.

The SMC algorithm presented in this section is seeking a weighted sample

of particles {Z
(J)
1:t ,W

(J)
1:t }

N
J=1 (where W

(J)
1:t is the unnormalized importance

weight for particle Z
(J)
1:t ) from the generalized fiducial distribution of the

unknown parameters in the normal linear mixed model. Once this sample
of N weighted particles is obtained, inference procedures such as confidence
intervals and parameter estimates can be performed on any of the unknown
parameters or functions of parameters. For example, parameter estimates
can be determined by taking a weighted average of the particles with the as-
sociated (normalized) weights. A C% confidence interval can be found easily
for each parameter by ordering the particles and finding the particle values
θL and θU such that the sum of the normalized weights for the particles
between θL and θU is C%.

2.2. Algorithm. The algorithm to obtain a generalized fiducial sample for
the unknown parameters of normal linear mixed models is outlined below.
As discussed earlier, the data Y are not observed exactly, but rather intervals
around the data are determined by the level of uncertainty of the measure-
ment (e.g. due to the resolution of the instrument used). The structural
equation formed as interval data for t = 1, . . . , n with i = 1, . . . , r random
effects is

at < Yt =Xtβ +
r∑

i=1

σi

li∑

j=1

vi,j,tzi,j ≤ bt,(2.3)

where the random effect design vector component vi,j,t indicates the jth
level of a random effect i for the tth element of the data vector, Xt is the
tth row of the fixed effect design matrix X and zi,j is a normal random
variable for level j of random effect i. Each datum can have one or more
random components, and so we write Z1:t = (Z1, . . . ,Zt) with capital letters
to indicate the possible vector nature of each Zk for k = 1, . . . , t. In the case
that r > 1, Z1:t is vectorized to be a

∑r
i=1 li × 1 vector. Also, for notational

convenience, Zk will represent all zi,j for i = 1, . . . , r and j = 1, . . . , li that
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are not present or shared with any datum less than k, which will always
at least include the error effect, denoted zk,r. It will be necessary at times
to reference the nonerror random effects, and they will be denoted Zk,1:r−1,
representing all the nonerror random effects first introduced at time k. The
goal is to generate a sample of the zi,j for i= 1, . . . , r and j = 1, . . . , li such
that at <Yt ≤ bt for t= 1, . . . , n.

With a sample of size n, the generalized fiducial distribution on the pa-
rameter space can be described as

V (Q((a,b]1:n,Z1:n)) | {Q((a,b]1:n,Z1:n) 6=∅},(2.4)

where we define the set function Q as the set containing the values of the
parameters that satisfy equation (2.3), given the data and random compo-
nent Z. Generating a sample from (2.4) is equivalent to generating the Z

such that the set Q is nonempty, and this results in a target distribution at
time t written as

π1:t(Z1:t | (a,b]1:t) = π1:t(Z1:t)∝ exp(−(ZT
1:t ·Z1:t)/2) · ICt(Z1:t),(2.5)

where ICt(·) is an indicator random variable for the set Ct, where Ct is the
set of Z1:t such that Qt is not empty. This is equivalent to Ct = {Z1:t :∃β,σi
so that ak <Xkβ +

∑r
i=1 σi

∑li
j=1 vi,j,kzi,j ≤ bk, k = 1, . . . , t}. The restriction

that Q
(J)
t is nonempty can be translated into truncating the possible val-

ues of the particle corresponding to the error random effect to the interval
defined by

mt(Z
(J)
1:t−1,Z

(J)
t,1:r−1)

= min

(
a
(J)
t − (Xtβ +

∑r−1
i=1 σi

∑li
j=1 vi,j,tz

(J)
i,j )

σr
, (β,σ) ∈Q

(J)
t−1

)
,

Mt(Z
(J)
1:t−1,Z

(J)
t,1:r−1)

= max

(
b
(J)
t − (Xtβ +

∑r−1
i=1 σi

∑li
j=1 vi,j,tz

(J)
i,j )

σr
, (β,σ) ∈Q

(J)
t−1

)
.

That is, mt(Z
(J)
1:t−1,Z

(J)
t,1:r−1) and Mt(Z

(J)
1:t−1,Z

(J)
t,1:r−1) are the minimum and

maximum possible values of z
(J)
t,r .

The proposal distribution used is the standard Cauchy distribution due to
improved computational stability of sampling in the tails over the more nat-

ural choice of a standard normal distribution. Specifically, the z
(J)
t,r are sam-

pled from a standard Cauchy truncated to (mt(Z
(J)
1:t−1,Z

(J)
t,1:r−1),Mt(Z

(J)
1:t−1,

Z
(J)
t,1:r−1)) for t > p+r (i.e., for t greater than the dimension of the parameter
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space); otherwise z
(J)
t,r , like Z

(J)
t,1:r−1, is sampled from a standard normal dis-

tribution. The conditional proposal density at time t for t > p+ r is defined
as

π̃t|1:t−1(Zt | Z1:t−1, (a,b]1:t)

= π̃t|1:t−1(Zt)

∝ exp(−(ZT
t,1:r−1 ·Zt,1:r−1)/2)× I(mt(Z1:t−1,Zt,1:r−1),Mt(Z1:t−1,Zt,1:r−1))(zt,r)

× [(1 + z2t,r)(F (Mt(Z1:t−1,Zt,1:r−1))−F (mt(Z1:t−1,Zt,1:r−1)))]
−1,

where F is the standard Cauchy cumulative distribution function. Then the
full proposal density at time t is

π̃1:t(Z1:t | (a,b]1:t) = π̃1:t(Z1:t) = π̃1

t∏

i=2

π̃i|1:i−1(Zi | Z1:i−1, (a,b]1:i).(2.6)

The weights are defined as the ratio of the full joint target density to
the full joint proposal density at time t. More specifically, the weights are
derived as

W1:t = π1:t/π̃1:t.(2.7)

The resulting sequential updating factor to W1:t−1 is Wt = exp(−z2t,r/2)(1+

z2t,r)(F (Mt(Z1:t−1,Zt,1:r−1))− F (mt(Z1:t−1,Zt,1:r−1))) where F is the stan-
dard Cauchy cumulative distribution functions. More details regarding the
derivation of these weights can be found in Appendix C.

Standard SMC resampling finds particles according to the distribution of
weights at a given time step, copies the particle and then assigns the resam-
pled particles equal weight. By copying particles in this setting, we would
not end up with an appropriate distribution on the parameter space. Intu-
itively, this is because after each time step, each particle implies the set, or
geometrically the polyhedron, of possible values of the unknown parameters

given the generated Z
(J)
1:t .

If the particles are simply copied, the distribution of polyhedrons will be
concentrated in a few areas due to particles with initially higher weight, and
will not be able to move from those regions because subsequent particles
would continue to define subsets of the copied polyhedrons, as outlined in
the algorithm presented above. Hence rather than copy the selected particles
exactly, we alter them in a certain way in order to retain properties of heavy

particles, while still allowing for an appropriate sample of {Q
(J)
t }NJ=1. It

can be thought of as a Gibbs-sampling step in a noncoordinate direction
determined by the selected particle. The precise mathematics of this step
can be found in Appendix A.



GFI FOR NORMAL LMM 11

The proposed algorithm targets the generalized fiducial distribution of
the unknown parameters of a normal linear mixed model of (2.4) displayed
in (2.5). The following theorem confirms that the weighted particle system
from the proposed algorithm achieves this as the sample size N approaches
infinity. The proof is in Appendix C.

Theorem 2.1. Given a weighted sample {Z
(J)
1:n ,W

(J)
1:n }

N
j=1 obtained using

the algorithm presented above targeting (2.5), then for any bounded, mea-
surable function f as N −→∞,

(
N∑

I=1

W
(I)
1:n

)−1 N∑

J=1

f(Z
(J)
1:n )W

(J)
1:n

P
−→

∫
f(Z1:n)π1:n = π1:nf(Z1:n).

This result holds for slightly weaker conditions, which are outlined in
Appendix C. When the data are i.i.d. (e.g., when the error effect is the
only random component), the confidence intervals based on the generalized
fiducial distribution are asymptotically correct [Hannig (2012)]. When the
data are not i.i.d., previous experience and simulation results suggest that
the generalized fiducial method presented above still leads to asymptotically
correct inference as the sample size n increases; see the supplemental docu-
ment [Cisewski and Hannig (2012)] for a short simulation study investigating
asymptotic properties of the proposed method and algorithm. The asymp-
totic exactness of generalized fiducial intervals for two-component normal
linear mixed models was established in E, Hannig and Iyer (2008); asymp-
totic exactness of generalized fiducial intervals for normal linear mixed mod-
els is a topic of future research.

3. Simulation study and applications. This simulation study has two
parts. In the first part, we consider the unbalanced two-fold nested model
with model designs selected from Hernandez, Burdick and Birch (1992). In
the second part, we use the unbalanced two-factor crossed design with an
interaction term with designs selected from Hernandez and Burdick (1993);
both sets of designs include varying levels of imbalance. In addition to the
classical, ANOVA-based methods proposed in Hernandez, Burdick and Birch
(1992) and Hernandez and Burdick (1993), we compare the performance of
our method to the h-likelihood approach of Lee and Nelder (1996), and a
Bayesian method proposed in Gelman (2006). The purpose of this study is
to compare the small-sample performance of the proposed method with cur-
rent methods using models with varying levels of imbalance. The methods
were compared using frequentist repeated sampling properties. Specifically,
performance will be compared based on empirical coverage of confidence
intervals and average confidence interval length. It is understood that the
selection of a prior distribution influences the behavior of the posterior; the
priors were selected based on recommendations in the literature for nor-
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mal linear mixed models as noted above. While Bayesian methods do not
necessarily maintain frequentist properties, many practitioners interpret re-
sults from Bayesian analyses as approximately frequentist (i.e., they expect
repeated-sampling properties to approximately hold) due to the Bernstein–
von Mises theorem [Le Cam (1986), van der Vaart (2007)], and so performing
well in a frequentist sense has appeal. There are a number of examples inves-
tigating frequentist performance of Bayesian methodology such as Diaconis
and Freedman (1986a, 1986b), Ghosal, Ghosh and van der Vaart (2000) and
Mossman and Berger (2001).

It is important to note that the proposed method is not restricted to the
model designs selected for this study, and can be applied to any normal linear
mixed model that satisfies the assumptions from previous sections, while the
included ANOVA methods were developed specifically for the model designs
used in this study. A more efficient algorithm than the proposed method may
be possible for specific model designs, but one of our goals was to present a
mode of inference for any normal linear mixed model design.

As presented below, the proposed method tends to be conservative with
comparable or shorter intervals than the nonfiducial methods used in the
study.

3.1. Unbalanced two-fold nested model. For the first part of the simula-
tion study, we consider the unbalanced two-fold nested linear model

yijk = µ+αi + βij + εijk(3.1)

for i = 1, . . . , I , j = 1, . . . , Ji, and k = 1, . . . ,Kij , where µ is an unknown
constant and αi ∼N(0, σ2

α), βij ∼N(0, σ2
β) and εijk ∼N(0, σ2

ε).
Table 1 displays the model designs used in this part of the simulation

study. Five model designs of Hernandez, Burdick and Birch (1992) were se-
lected to cover different levels of imbalance both in the number of nested
groups (Ji) and the number of observations within each group (Kij). The

Table 1

Model designs used in the two-fold nested model of (3.1)

Design φ1 φ2 φ I Ji Kij n

MI-1 0.9000 0.8889 0.8090 5 2,1,1,1,1 4,4,2,2,2,2 16
MI-2 0.7778 0.7337 0.6076 3 4,2,1 1,5,5,5,1,5,1 23
MI-3 1.0000 1.0000 1.0000 3 3,3,3 2,2,2,2,2,2,2,2,2 18
MI-4 0.4444 1.0000 0.4444 6 1,1,1,1,1,7 2,2,2,2,2,2 24

2,2,2,2,2,2
MI-5 1.0000 0.4444 0.4444 3 2,2,2 1,1,1,1,1,7 12

Note: φ1 and φ2 reflect the degree of imbalance due to Ji and Kij , respectively, and φ is
an overall measure of imbalance. See (3.1) for definitions of I , Ji and Kij ; note sample
size (n) =

∑
i

∑
j
Kij .
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parameters φ1 and φ2 reflect the degree of imbalance due to Ji and Kij ,
respectively. The measures of imbalance listed is based on methods pre-
sented in Khuri (1987) where values range from 0 to 1, and smaller val-
ues suggest a greater degree of imbalance. The parameters’ values used
in this part of the study are µ = 0, and the following combinations of

(σ2
α, σ

2
β, σ

2
ε): PI-1 = (0.2,0.1,0.7), PI-2 = (0.4,0.3,0.3), PI-3 = (0.2,0.7,0.1),

PI-4 = (25,4,16) and PI-5 = (1,1,1).
For each model and parameter design combination, 2000 independent

data sets were generated, and 5000 particles were simulated for the pro-
posed method. Hernandez, Burdick and Birch (1992) present two methods
for determining confidence intervals for σ2

α, and three methods for confi-

dence intervals on σ2
β . One of the methods is based on the confidence interval

construction presented in Ting et al. (1990) for balanced designs (denoted
TYPEI). The other method invokes unweighted sum of squares and is de-
noted USS. We do not consider the third method presented in Hernandez,
Burdick and Birch (1992) for confidence intervals on σ2

β because there is

not an analogous method for σ2
α. We note that for unbalanced designs, the

decomposition of the sum-of-squares is not unique and the desired distribu-
tional properties (independence and chi-squared) do not generally hold.

The h-likelihood approach of Lee and Nelder (1996) was implemented us-
ing the R package hglm, and the results will be referenced as HLMM. The
h-likelihood methodology is an approach for extending the likelihood in the
case of additional, unobserved, random components [Lee, Nelder and Paw-
itan (2006)]. In the R package hglm, inference on the variance components
is performed on the log scale. This package was selected because it allows
for multiple random effects terms, and it includes standard errors on the
estimates of variance components.

A Bayesian method is also considered for comparison. Bayesian hierarchi-
cal models provide a means of constructing confidence intervals for random-
effects models. Part of the art of the Bayesian methodology is in selecting
appropriate prior distributions for the unknown parameters. For inference on
the unknown variance component parameters when there is no prior informa-
tion available (i.e., when seeking a noninformative prior), Gelman (2006) rec-
ommends employing a uniform prior distribution on the standard deviation
parameters when there are a sufficient number of groups (at least 5); other-
wise, a half-t distribution is suggested. Per the recommendation of Gelman
(2006), both uniform and half-t priors are considered (denoted BAY11.5 and
BAY13, and BAY21.5 and BAY23, respectively, where the subscripts 1.5 and
3 specifies the prior scale variable as explained in Appendix B). The R pack-
age rjags is used to implement this method; see Appendix B for more details.

Performance is based on the empirical coverage of (1 − α)100% confi-
dence intervals and average interval length for the parameters of inter-
est θ. We define a lower-tailed (1 − α)100% confidence interval on θ as
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the interval (−∞,Uα] such that P (−∞< θ ≤ Uα) = 1− α, an upper-tailed
(1 − α)100% confidence interval on θ as the interval [Lα,∞) such that
P (Lα ≤ θ <∞) = 1− α and a two-sided equal-tailed confidence interval on
θ as the interval [Lα/2,Uα/2] such that P (Lα/2 ≤ θ ≤ Uα/2) = 1− α. Based
on the normal approximation to the binomial distribution, we will consider
empirical coverage between 94% and 96% appropriate for 95% two-sided
confidence intervals.

A summary of the two-sided 95% confidence interval results are displayed
in Figure 1. In addition, the supplemental document [Cisewski and Hannig
(2012)] includes figures with the results summarized by parameter along with
the complete raw data results. Average interval lengths are not included in
the displayed results for HLMM because the excessive lengths would skew
the scale of the plots; however, the average lengths are displayed in the raw
data results in the supplemental document [Cisewski and Hannig (2012)].

HLMM has empirical coverage below the stated level, and the overall
longest average interval lengths. BAY11.5, BAY13, BAY21.5 and BAY23 tend
to be conservative with the longest average interval lengths after HLMM.
USS and TYPEI maintain the stated coverage well, and FID tends to be
conservative. Even though FID is conservative, its average interval lengths
are comparable or shorter than those of USS and TYPEI. However, the
average interval lengths of USS and TYPEI for σ2

β are surprisingly wider
than BAY11.5, BAY13, BAY21.5, BAY23 and FID for MI-1, as revealed in
the plot of the average lengths in Figure 1(a). This is due to the model
design; specifically, the derivation of the confidence intervals results in the
degrees of freedom of 1 for the nested factor (calculated as

∑I
i=1 Ji− I = 1).

BAY11.5, BAY13, BAY21.5, BAY23 and FID do not appear to have this
issue. Upper and lower one-sided confidence interval results for σ2

α and σ2
β

for USS and TYPEI tend to stay within the stated level of coverage, and
BAY11.5, BAY13, BAY21.5, BAY23 and FID range from staying within the
stated level of coverage to very conservative.

The proposed method, while maintaining conservative coverage, has av-
erage interval lengths that are competitive or better than the other methods
used in this part of the study. The proposed method offers an easily gen-
eralizable framework and provides intervals for fixed effects and the error
variance component, unlike the methods presented in Hernandez, Burdick
and Birch (1992). While the conservative coverage for the Bayesian methods
can be deemed acceptable, their average interval lengths tend to be wider
than the proposed method.

3.1.1. Application 1. In addition to the simulation study, we consider
the application of model (3.1) presented in Hernandez, Burdick and Birch
(1992) concerning the blood pH of female mice offspring. Fifteen dams were
mated with 2 or 3 sires, where each sire was only used for one dam (i.e.,
37 sires were used in the experiment), and the purpose of the study was
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Fig. 1. Summary of simulation results. (a) Displays the combined results for σ2
α and σ2

β for the two-fold nested model. (b) Displays the
combined results for σ2

α, σ
2
β and σ2

αβ for the two-factor crossed design with interaction. The first row is the empirical coverage probabilities
for 95% two-sided confidence intervals. The second row, first column is the log10 of the average interval lengths divided by the average
interval lengths of FID, and the second row, second column is the average interval lengths divided by the average interval lengths of FID.
Each value used in a box plot corresponds to a particular model design and parameter combination for each nonerror variance component.
The average interval lengths for HLMM were not included in the displayed results due to their excessive lengths. All the simulation results
are available in the supplemental document [Cisewski and Hannig (2012)].
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Table 2

Two-fold nested model: real data example

Var. comp. Method 95% 2-sided CI 2-sided/ave. len. Upper/lower

σ2
α USS (2.30, 28.56) 0.953/25.1 0.949/0.958

TYPEI (1.94, 26.23) 0.950/25.2 0.949/0.957
BAY11.5 (1.73, 30.72) 0.955/29.2 0.948/0.959
BAY13 (1.51, 30.21) 0.956/37.2 0.948/0.962
BAY21.5 (1.56, 30.02) 0.955/27.3 0.948/0.960
BAY23 (1.76, 30.04) 0.955/27.5 0.950/0.961
FID (1.53, 26.67) 0.947/24.5 0.958/0.947

σ2
β USS (0.00, 11.56) 0.961/10.9 0.952/0.952

TYPEI (0.00, 11.26) 0.964/12.4 0.953/0.953
BAY11.5 (0.17, 11.81) 0.976/11.2 0.956/0.994
BAY13 (0.04, 12.55) 0.980/11.3 0.959/0.996
BAY21.5 (0.01, 12.49) 0.982/11.3 0.958/0.994
BAY23 (0.01, 11.92) 0.983/11.3 0.958/0.995
FID (0.19, 10.54) 0.974/10.7 0.951/0.986

Note: The 95% intervals are based on the actual data while the remaining information
are the empirical results from 2000 independently generated data set using the REML
estimates for each parameter. The results are the empirical coverage and average interval
lengths of 95% confidence intervals.

to determine if the variability in the blood pH of the female offspring is, in
part, due to the variability in the mother. There is imbalance in the data due
to the number of sires mated with each dam (2 or 3); also note the natural
imbalance in the data resulting from the number of female offspring.

The 95% confidence intervals based on the real data are presented in Ta-
ble 2. An example of the generalized fiducial distribution for σ2

α is displayed
in Figure 2. This highlights one of the advantages of the proposed method
over classical methods (and shared with Bayesian methods), which is a dis-
tribution on the parameter space allowing for inferences similar to those
made using Bayesian posterior distributions.

In order to evaluate the empirical coverage of the proposed method, we
perform a simulation study using the REML estimates for all the param-
eters (µ = 44.92, σ2

α = 8.90, σ2
β = 2.65 and σ2

ε = 24.81). Simulating 2000
independent data sets with the noted parameter values, we find the empir-
ical coverage using USS, TYPEI, BAY11.5, BAY13, BAY21.5, BAY23 and
FID, and the average lengths of the two-sided intervals. The results of the
simulation study are also found in Table 2.

The confidence interval coverage and average lengths for σ2
α are compara-

ble for all methods with BAY13 having the longest average interval length.
For σ2

β , BAY11.5, BAY13, BAY21.5, BAY23 and FID tend to be more conser-
vative while USS and TYPEI correctly maintain the stated level of coverage.
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Fig. 2. The generalized fiducial distribution of 5000 generated particles for σ2
α using the

real data described in Section 3.1.1. The solid line is the normal kernel density estimate
of the distribution with a point mass at zero. The two vertical dashed lines represent the
lower and upper bounds for 95% confidence intervals based on the weights of the generated
particles.

USS, TYPEI and FID have comparable interval lengths, and the average
lengths of BAY11.5, BAY13, BAY21.5, BAY23 are slightly longer.

3.2. Unbalanced two-factor crossed design with interaction. In this part
of the simulation study, we consider the unbalanced two-factor crossed de-
signs with interaction written as

Yijk = µ+αi + βj + (αβ)ij + εijk(3.2)

for i = 1, . . . , I , j = 1, . . . , J and k = 1, . . . ,Kij , where µ is an unknown
constant and αi ∼ N(0, σ2

α), βj ∼ N(0, σ2
β), (αβ)ij ∼ N(0, σ2

αβ) and εijk ∼

N(0, σ2
ε ).

This model is presented in Hernandez and Burdick (1993), where the
authors propose a method based on unweighted sum of squares to construct
confidence intervals for σ2

α, σ
2
β and σ2

αβ . The method they propose is based

on intervals for balanced designs presented by Ting et al. (1990). In the
simulation study, this method will be called HB. As with (3.1), HLMM
from Lee and Nelder (1996), and BAY11.5, BAY13, BAY21.5 and BAY23
from Gelman (2006) will be used as a comparison.

Table 3 displays the model designs used in this part of the study, and,
again, the overall measure of imbalance (φ) proposed in Khuri (1987) is
displayed for each design. The parameters values used in this part of the
study are µ= 0, and the following combinations of (σ2

α, σ
2
β, σ

2
αβ, σ

2
ε): PII-1 =

(0.1,0.5,0.1,0.3), PII-2 = (0.1,0.3,0.1,0.5), PII-3 = (0.1,0.1,0.3,0.5), PII-4 =
(0.1,0.1,0.5,0.3), and PII-5 = (1,1,1,1).
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Table 3

Model designs used in the two-factor crossed design with interaction model of (3.2)

Design φ I J Kij n

MII-1 0.8768 4 3 2,1,3/2,1,1/2,2,2/1,2,3 22
MII-2 0.6667 3 3 4,1,1/4,1,1/4,1,1 18
MII-3 0.6667 3 3 4,4,4/1,1,1/1,1,1 18
MII-4 0.4011 3 4 8,1,1,1/1,1,1,1/1,1,1,1 19
MII-5 0.7619 5 3 1,2,2/5,2,7/2,2,2/2,4,2/3,2, 2 40
MII-6 1.000 3 3 2,2,2/2,2,2/2,2,2 18

Note: The parameter φ is an overall measure of imbalance of the model. See (3.2) for
definitions of I , J and Kij ; note sample size (n) =

∑
i

∑
j
Kij .

For each design and set of parameter values, 2000 independent data sets
were generated, and 5000 particles were simulated for the proposed method.
As before, performance is based on the empirical coverage of (1− α)100%
confidence intervals and average interval length for the parameter of inter-
est θ. Based on the normal approximation to the binomial distribution, we
will consider empirical coverage between 94% and 96% appropriate for 95%
two-sided confidence intervals.

A summary of the two-sided 95% confidence interval results for σ2
α, σ

2
β

and σ2
αβ are displayed in Figure 1. In addition, the supplemental document

[Cisewski and Hannig (2012)] includes figures with the results summarized
by parameter along with the complete raw data results. Average interval
lengths are not included in the displayed results for HLMM because the
excessive lengths would skew the scale of the plots; however, the average
lengths are displayed in the raw data results in the supplemental document
[Cisewski and Hannig (2012)].

HLMM has empirical coverage below the stated level, and the longest
average interval lengths. While HB maintains the stated coverage and FID
tends to be more conservative, they have comparable average interval lengths.
BAY11.5, BAY13, BAY21.5, and BAY23 are conservative with the longest av-
erage interval lengths after HLMM for σ2

α and σ2
β ; while still conservative

for σ2
αβ , the average interval lengths are shorter than HB, but longer than

FID. One-sided confidence interval results for HB maintains the stated cov-
erage, and BAY11.5, BAY13, BAY21.5, BAY23 and FID tends to be within
the stated coverage to very conservative.

4. Conclusion. Even with the long history of inference procedures for
normal linear mixed models, a good-performing, unified inference method is
lacking. ANOVA-based methods offer, what tend to be, model-specific so-
lutions. While Bayesian methods allow for solutions to very complex mod-
els, determining an appropriate prior distribution can be confusing for the
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nonstatistician practitioner. In addition, for the models considered in the
simulation study and the prior selected based on recommendations in the
literature, the Bayesian interval lengths were not generally competitive with
the other methods used in the study. The proposed method allows for con-
fidence interval estimation for all parameters of balanced and unbalanced
normal linear mixed models. In general, our recommendation is to use the
proposed method because of its apparent robustness to design imbalance,
good small sample properties and flexibility of inference due to a fiducial
distribution on the parameter space. If the design is balanced and only
confidence intervals are desired, an ANOVA-based method would provide a
computationally efficient solution.

It is interesting to note that even though more variation was incorporated
into the data for the proposed method due to its acknowledgment of known
uncertainty using intervals, in the simulation study, the proposed method
tended to have conservative coverage, but the average interval lengths were
comparable or shorter than the other methods that assumed the data are
observed exactly. The currently implemented algorithm is suitable for 9 or
fewer total parameters, but the method does not limit the number of pa-
rameters. A MATLAB implementation of the proposed algorithm is avail-
able on the author’s website at http://www.unc.edu/~hannig/download/
LinearMixedModel MATLAB.zip.

APPENDIX A: RESAMPLING ALTERATION STEP

The particle to be resampled is decomposed into an orthogonal projection
onto a certain space (discussed below) and the part orthogonal to that space,
and then the distributional properties that arise from the decomposition are
used to alter the resampled particle. The alteration step of the proposed algo-
rithm is performed in such a way that it still solves the system of inequalities
of (2.3) up to time t using the following idea (to ease the notational complex-
ity, we do not include the dependence of the variables on t). Suppose particle
L is selected to be resampled (for an L between 1 and N ). For each random

effect, e, let Y =X′β′ + σVZ(L), where X′ = [X,{
∑li

j=1 Vi,jz
(L)
i,j }i 6=e], β

′ =

(β,{σi}i 6=e)
′, σ = σe and VZ(L) =

∑le
j=1Ve,jZ

(L)
e,j . In order to alter Z(L), we

first find the basis vectors, η, for the null space N = null[−X′,V] = η where
for matrix A= [−X′,V], null(A) is the set {η :Aη = 0}, and η = (η1, η2)

T

such that (i) X′ ·η1 = 0, (ii) V ·η2 = 0, (iii) ηT2 ·η2 = I (i.e., η2 is orthonormal)
and (iv) rank(η) = rank(η2). We perform the following decomposition:

Z(L) =ΠZ(L) + ‖Z(L) −ΠZ(L)‖ ·
Z(L) −ΠZ(L)

‖Z(L) −ΠZ(L)‖
,(A.1)

where ΠZ(L) is the projection onto the null space N (i.e., ΠZ(L) = η · ηT ·
Z(L)), and ‖ · ‖ is the L2 norm. Define C= ηT2 ·Z(L) (so that, η2 ·C=ΠZ(L)),

http://www.unc.edu/~hannig/download/LinearMixedModel_MATLAB.zip
http://www.unc.edu/~hannig/download/LinearMixedModel_MATLAB.zip
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D= ‖Z(L)−ΠZ(L)‖, and τ = Z(L)−ΠZ(L)

‖Z(L)−ΠZ(L)‖
. Then if Z(L) is standard normal,

C∼Nle(0, I) where le is the number of levels of random effect e of Z(L) to

be resampled at time t, and D ∼
√

χ2
t−d where d = rank(N ), and C and

D are independent by design. The alteration of Z(L) is accomplished by
sampling new values of C and D (denoted C̃ and D̃, resp.) according to
their distributions determined by the decomposition above, and the altered
particle is

Z̃ = η2 · C̃+ D̃ · τ.(A.2)

Notice that if Z(L) is a standard normal conditioned on Ct, then so is Z̃ ,
and hence the alteration proposed still targets the correct distribution and
is a Markovian step.

Furthermore, the set Q
(L)
t = {(β′, σ) :ai <X′β′+σVZ(L) ≤ bi, i= 1, . . . , t}

can be adjusted noting that if (β′, σ) solves ai <X′β′+σV(η2 ·C+D ·τ)≤ bi
for i= 1, . . . , t, then (β̃, σ̃) can be found such that ai <X′β̃+ σ̃V(η2 · C̃+ D̃ ·

τ)≤ bi for i= 1, . . . , t by considering X′β+σVZ =Xβ+σV(η2 ·C+ τD) =

X′β̃+ σ̃V(η2 · C̃+ τD̃) =X′β̃+ σ̃VZ̃ . Examining the orthogonal parts first,

σV(τD) = σ̃V(τD̃) implies Vτ(σD − σ̃D̃) = 0 implies σ̃ = σ(D/D̃). The

relation between β̃ and β′ follows from the remaining portion

X′β′ + σV(η2 ·C) =X′β̃ + σ̃V(η2 · C̃) implies
(A.3)

X′(β̃ − β′) + σVη2(C̃ ·D/D̃−C) = 0.

Noting by definition −X′η1 +Vη2 = 0, then

−X′ση1(C̃ ·D/D̃−C) + σVη2(C̃ ·D/D̃−C) = 0.(A.4)

By combining (A.3) and (A.4), we see that β̃ − β′ =−ση1 · (C̃ ·D/D̃−C),

and hence β̃ = β′−ση1 · (C̃ ·D/D̃−C). Hence the sets Q
(J)
t (Z

(J)
1:t ) are easily

updated to Q
(J)
t (Z̃

(J)
1:t ). This procedure is repeated for each random effect.

APPENDIX B: PRIOR DISTRIBUTION SELECTION

The R package “rjags” was used to implement the Bayesian methods used
in the simulation study and applications. Gelman (2006) suggests using a
uniform prior [i.e., U(0, a)] on the standard deviation parameters when there
are at least 5 groups and explains that fewer than 3 groups results in an
improper posterior distribution. Calibration is necessary in selecting the
parameter a in the prior distribution; we use 1.5 and 3 times the range of
the data (per the recommendation in Gelman [(2006), page 528] to use a
value that is “high but not off the scale”), which appears reasonable when
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reviewing the resulting posterior distributions. In the simulation study, the
results at these scale are denoted by BAY11.5 and BAY13, respectively. For
example, the hierarchical model for the two-fold nested model of (3.1) is

Yijk ∼N(µ+ αi + βij , σ
2
ε), i= 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,Kij,

αi ∼N(0, σα), i= 1, . . . , I, βij ∼N(0, σβ), j = 1, . . . , Ji,

σα ∼ U(0, a), σβ ∼ U(0, a).

For the second Bayesian method, a similar hierarchical model is used. In-
stead of a uniform distribution on the nonerror variance components, a half-
Cauchy distribution with scale parameter a set as 1.5 or 3 times the range
of the data (denoted BAY21.5 and BAY23, resp., in the simulation study) is
used.

APPENDIX C: PROOF OF THEOREM

The proof of the convergence of the proposed SMC algorithm follows
from ideas presented in Douc and Moulines (2008). Theorem 2.1 will fol-
low from proving the convergence of the generated particles after each stage
of the algorithm: sampling, resampling and alteration. The development of
the particle system using the proposed algorithm does not follow the tradi-
tional SMC algorithm as presented in Douc and Moulines (2008), Section 2.
A distinction is seen in the formulation of the proposed weights introduced
in (2.7) and discussed below.

Using the derivation of the proposal distribution in and above (2.6),
the target distribution of (2.5) and noting that ICt(Z1:t) = ICt−1(Z1:t−1) ·
I⋆(Zt,1:r−1) · I(mt(Z1:t−1,Zt,1:r−1),Mt(Z1:t−1,Zt,1:r−1))(zt,r) [where the ⋆ in
I⋆(Zt,1:r−1) indicates the lack of restriction to a specific set of values for
Zt,1:r−1], the marginal target distribution at time t is

π̂1:t−1 =

∫
π1:t(Z1:t)dZt =

∫
exp(−(ZT

1:t ·Z1:t)/2)ICt(Z1:t)

Θ1:t
dZt

∝ π1:t−1

∫
exp(−(ZT

t ·Zt)/2)

× I⋆(Zt,1:r−1)I(mt(Z1:t−1,Zt,1:r−1),Mt(Z1:t−1,Zt,1:r−1))(zt,r)dZt

∝ π1:t−1 · (Φ(Mt(Z1:t−1,Zt,1:r−1))−Φ(mt(Z1:t−1,Zt,1:r−1))),

where F and Φ are the standard Cauchy and standard normal cumulative
distribution functions, respectively, and Θ1:t is the normalization factor at
time t. It then follows that the conditional target distribution at time t is

πt|1:t−1

= π1:t(Z1:t)/π̂1:t(Z1:t)
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∝ exp(−(ZT
t ·Zt)/2) · I⋆(Zt,1:r−1) · I(mt(Z1:t−1,Zt,1:r−1),Mt(Z1:t−1,Zt,1:r−1))(zt,r)

/(Φ(Mt(Z1:t−1,Zt,1:r−1))−Φ(mt(Z1:t−1,Zt,1:r−1))).

Finally, following the notation just below (2.7), the derivation of the weights

at time t is W1:t =
π1:t
π̃1:t

=
πt|1:t−1·π̂1:t−1

π̃t|1:t−1·π̃1:t−1
∝ exp(−z2t,r/2)(1 + z2t,r)(F (Mt(Z1:t−1,

Zt,1:r−1))−F (mt(Z1:t−1,Zt,1:r−1))) ·
π1:t−1

π̃1:t−1
∝Wt ·W1:t−1. This proof will use

the above formulation and the following notation and definition.

A particle system is defined as {Z
(J)
1:t ,W

(J)
1:t }

N
J=1 with Z

(J)
1:t sampled from

the proposal distribution π̃1:t as defined in (2.6) targeting probability mea-

sure π1:t on (Θ1:t,B(Θ1:t)), and un-normalized weights W
(J)
1:t as defined

in (2.7). Let π̃t|1:t−1 be the marginal proposal density at time t as defined
above equation (2.6), which follows a Cauchy distribution truncated to the
region Rt , (mt(Z1:t−1,Zt,1:r−1),Mt(Z1:t−1,Zt,1:r−1)) defined by previously

sampled particles. For notational convenience, let Ωt =
∑N

J=1W
(J)
1:t . Define

two sigma-fields F0 , σ({Z
(J)
1:t }

N
J=1, (a, b]1:t) and F̃J ,F0 ∨σ({Z̃

(K)
1:t }1≤K≤J ,

(a, b]1:t), for J = 1, . . . ,N . Finally, we define proper set Bt [Douc and Moulines
(2008), Section 2.1] where Bt , {f ∈ L1(Θ1:t, π1:t), F (·, |f |) ∈ Bt−1} and
F (Z1:t−1, f) =

∫
f(Z1:t−1,Zt)I⋆(Zt,1:r−1)IRt(zt,r)(Φ(Mt(Z1:t−1,Zt,1:r−1)) −

Φ(mt(Z1:t−1,Zt,1:r−1)))πt|1:t−1(dZt).

Definition C.1. Following Definition 1 of Douc and Moulines (2008), a

weighted sample {Z
(J)
1:t ,W

(J)
1:t }J=1,...,N is consistent for the probability mea-

sure π1:t and the proper set Bt if, for any f ∈Bt, Ω
−1
t

∑N
J=1W

(J)
1:t f(Z

(J)
1:t )

P
−→

∫
f(Z1:t)π1:t(dZ1:t), π1:t(f), and Ω−1

t maxNJ=1W
(J)
1:t

P
−→ 0.

Two additional conditions on the set Bt will be required to guarantee con-
sistency for the particle system after the alteration step. Let f ∈Bt, and Π
be the projection matrix onto the null space defined in the description of the

resampling step of the algorithm found in Appendix A. E[f(Z̃
(J)
1:t ) | F̃J−1] =

∫
f(η2 · C̃ + D̃

(Z
(J)
1:t −ΠZ

(J)
1:t )

‖Z
(J)
1:t −ΠZ

(J)
1:t ‖

)dπC̃,D̃ =
∫
f(η2 · C̃ + D̃τ

(J)
1:t )dπC̃,D̃ , hf (Z

(J)
1:t ),

where C̃ and D̃ are as defined above (A.2). For hf to be in Bt, f must be
selected so that the following two conditions hold for any direction τ1:t:

∫
|hf (Z̃1:t)|dπ1:t =

∫ ∣∣∣∣
∫

f(η2 · C̃ + D̃τ1:t)dπC̃,D̃

∣∣∣∣dπ1:t <∞,(C.1)

F (Z̃1:t−1, hf ) =

∫ (∫
f(η2 · C̃ + D̃τ ′1:t)dπC̃,D̃

)
· ICt(Z1:t)

(C.2)
× (Φ(Mt)−Φ(mt))πt|1:t−1(dZt)<∞,
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where τ ′1:t =
([Z1:t−1,Zt]−Π[Z1:t−1,Zt])
‖[Z1:t−1,Zt]−Π[Z1:t−1,Zt]‖

. Let B̃t be the set of f ∈Bt such that (C.1)

and (C.2) hold. Then, B̃t ⊂Bt, and we replace Bt with B̃t in the definition

of Bt+1. Finally, since all bounded functions satisfy (C.1) and (C.2), B̃t is
nonempty.

The goal is to show the particle system generated from the presented
algorithm is consistent. This requires the particle system after sampling and
reweighting to be consistent, after resampling to be consistent and after the
alteration to be consistent.

After noting (i) for f ∈Bt, E(W
(J)
1:t f(Z

(J)
1:t ) | FJ−1) =W

(J)
1:t−1E(W

(J)
t f(Z

(J)
1:t ) |

FJ−1) = W
(J)
1:t−1 · F (Z1:t−1, f) for J = 1, . . . ,N , with F is defined above

and FJ−1 , σ({Z
(J)
1:t−1}

N
J=1, (a, b]1:t) ∨ σ({Z

(K)
1:t }1≤K≤J−1, (a, b]1:t), and

(ii) Wtπ̃t|1:t−1 = (Φ(Mt) − Φ(mt))πt|1:t−1, consistency after sampling and
reweighting closely follows the proof of Theorem 1 in Douc and Moulines
(2008). Consistency after resampling follows directly from Theorem 3 in
Douc and Moulines (2008) and consistency after the alteration step is ad-
dressed below in Lemma C.1.

Lemma C.1 (Alteration). Assuming the uniformly weighted sample

{Z
(J)
1:t ,1}

N
J=1 is consistent for (π1:t,Bt), then the altered uniformly weighted

sample {Z̃
(J)
1:t ,1}

N
J=1 is consistent for (π1:t, B̃t).

Proof. Note that the {Z̃
(J)
1:t ,1}

N
J=1 is the altered particle system, while

{Z
(J)
1:t ,1}

N
J=1 are the resampled particles. We note that hf is a function of

Z1:t because τ1:t is a function of Z1:t, and, at times, it will be necessary to

write τ
(J)
1:t = τ1:t(Z

(J)
1:t ). Recall that C and D are defined by a decomposition

of the original particle selected to be resampled and are independent by
design. The C̃ and D̃ are the random variables to be resampled according

to the target distributions of C and D with the τ
(J)
1:t considered fixed so that

Z̃1:t = η2 · C̃ + D̃τ1:t.
The lemma will follow once we show

N−1
N∑

J=1

E[f(Z̃
(J)
1:t ) | F̃J−1] =N−1

N∑

J=1

hf (Z
(J)
1:t )

−→

∫
hf (Z1:t)π1:t(dZ1:t) =

∫
f(Z1:t)π1:t(dZ1:t).

This is because trivially E[f(Z̃
(J)
1:t ) | F̃J−1] = f(Z̃

(J)
1:t ), so all that is needed is

for:
(i) N−1

∑N
J=1 hf (Z

(J)
1:t )−→

∫
hf (Z1:t)π1:t(dZ1:t) and

(ii)
∫
hf (Z1:t)dπ1:t(Z1:t) =

∫
f(Z1:t)π1:t(dZ1:t).
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Point (i) follows from (C.1), (C.2), and because f∈B̃t so that hf∈Bt. Now
we only need to show point (ii) that

∫
hf (Z1:t)π1:t(dZ1:t) =

∫
f(Z1:t)π1:t(dZ1:t).

This holds because∫
hf (Z1:t)dπ1:t =

∫
h∗f (τ1:t)dπτ

=

∫ (∫
f(η2 · C̃ + D̃τ1:t)dπC̃,D̃

)
dπτ

=

∫ (∫
f(η2 ·C +Dτ1:t)dπC,D

)
dπτ

=

∫
f(η2 ·C +Dτ1:t)dπC,D × dπτ

=

∫
f(Z1:t)dπ1:t =Eπ1:t[f(Z1:t)],

where h∗f (τ1:t) = hf (Z1:t), the equality from line one to line three follows be-

cause τ(Z1:t) = τ(Z̃1:t) and the equality in the third and fourth lines follows

by Fubini’s theorem because C̃ and D̃ are independent of τ . �
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SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/12-AOS1030SUPP; .pdf).
The asymptotic stability of the algorithm, with respect to the sample size
and the particle sample size, was tested, and the simulation results are in-
cluded in this document. The raw results for the simulation study in Sec-
tion 3 are also displayed, along with additional summary figures.
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