51 research outputs found

    End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes

    Full text link
    Meta-Bayesian optimisation (meta-BO) aims to improve the sample efficiency of Bayesian optimisation by leveraging data from related tasks. While previous methods successfully meta-learn either a surrogate model or an acquisition function independently, joint training of both components remains an open challenge. This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures. We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data. Early on, we notice that training transformer-based neural processes from scratch with RL is challenging due to insufficient supervision, especially when rewards are sparse. We formalise this claim with a combinatorial analysis showing that the widely used notion of regret as a reward signal exhibits a logarithmic sparsity pattern in trajectory lengths. To tackle this problem, we augment the RL objective with an auxiliary task that guides part of the architecture to learn a valid probabilistic model as an inductive bias. We demonstrate that our method achieves state-of-the-art regret results against various baselines in experiments on standard hyperparameter optimisation tasks and also outperforms others in the real-world problems of mixed-integer programming tuning, antibody design, and logic synthesis for electronic design automation

    Meta-Learning in Neural Networks: A Survey

    Get PDF
    The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent years. Contrary to conventional approaches to AI where tasks are solved from scratch using a fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given the experience of multiple learning episodes. This paradigm provides an opportunity to tackle many conventional challenges of deep learning, including data and computation bottlenecks, as well as generalization. This survey describes the contemporary meta-learning landscape. We first discuss definitions of meta-learning and position it with respect to related fields, such as transfer learning and hyperparameter optimization. We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods today. We survey promising applications and successes of meta-learning such as few-shot learning and reinforcement learning. Finally, we discuss outstanding challenges and promising areas for future research

    Survival of the Most Influential Prompts: Efficient Black-Box Prompt Search via Clustering and Pruning

    Full text link
    Prompt-based learning has been an effective paradigm for large pretrained language models (LLM), enabling few-shot or even zero-shot learning. Black-box prompt search has received growing interest recently for its distinctive properties of gradient-free optimization, proven particularly useful and powerful for model-as-a-service usage. However, the discrete nature and the complexity of combinatorial optimization hinder the efficiency of modern black-box approaches. Despite extensive research on search algorithms, the crucial aspect of search space design and optimization has been largely overlooked. In this paper, we first conduct a sensitivity analysis by prompting LLM, revealing that only a small number of tokens exert a disproportionate amount of influence on LLM predictions. Leveraging this insight, we propose the Clustering and Pruning for Efficient Black-box Prompt Search (ClaPS), a simple black-box search method that first clusters and prunes the search space to focus exclusively on influential prompt tokens. By employing even simple search methods within the pruned search space, ClaPS achieves state-of-the-art performance across various tasks and LLMs, surpassing the performance of complex approaches while significantly reducing search costs. Our findings underscore the critical role of search space design and optimization in enhancing both the usefulness and the efficiency of black-box prompt-based learning.Comment: Findings of EMNLP 2023. 10 pages, 5 figures, 4 tables (14 pages, 5 figures, 8 tables including references and appendices

    Integration of multi-scale protein interactions for biomedical data analysis

    Get PDF
    With the advancement of modern technologies, we observe an increasing accumulation of biomedical data about diseases. There is a need for computational methods to sift through and extract knowledge from the diverse data available in order to improve our mechanistic understanding of diseases and improve patient care. Biomedical data come in various forms as exemplified by the various omics data. Existing studies have shown that each form of omics data gives only partial information on cells state and motivated jointly mining multi-omics, multi-modal data to extract integrated system knowledge. The interactome is of particular importance as it enables the modelling of dependencies arising from molecular interactions. This Thesis takes a special interest in the multi-scale protein interactome and its integration with computational models to extract relevant information from biomedical data. We define multi-scale interactions at different omics scale that involve proteins: pairwise protein-protein interactions, multi-protein complexes, and biological pathways. Using hypergraph representations, we motivate considering higher-order protein interactions, highlighting the complementary biological information contained in the multi-scale interactome. Based on those results, we further investigate how those multi-scale protein interactions can be used as either prior knowledge, or auxiliary data to develop machine learning algorithms. First, we design a neural network using the multi-scale organization of proteins in a cell into biological pathways as prior knowledge and train it to predict a patient's diagnosis based on transcriptomics data. From the trained models, we develop a strategy to extract biomedical knowledge pertaining to the diseases investigated. Second, we propose a general framework based on Non-negative Matrix Factorization to integrate the multi-scale protein interactome with multi-omics data. We show that our approach outperforms the existing methods, provide biomedical insights and relevant hypotheses for specific cancer types
    • …
    corecore