
Autogenerative Networks

Oscar Chang

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Oscar Chang

All Rights Reserved

Abstract

Autogenerative Networks

Oscar Chang

Artificial intelligence powered by deep neural networks has seen tremendous improvements

in the last decade, achieving superhuman performance on a diverse range of tasks. Many worry

that it can one day develop the ability to recursively self-improve itself, leading to an intelligence

explosion known as the Singularity. Autogenerative networks, or neural networks generating

neural networks, is one major plausible pathway towards realizing this possibility. The object of

this thesis is to study various challenges and applications of small-scale autogenerative networks

in domains such as artificial life, reinforcement learning, neural network initialization and

optimization, gradient-based meta-learning, and logical networks. Chapters 2 and 3 describe

novel mechanisms for generating neural network weights and embeddings. Chapters 4 and 5

identify problems and propose solutions to fix optimization difficulties in differentiable

mechanisms of neural network generation known as Hypernetworks. Chapters 6 and 7 study

implicit models of network generation like backpropagating through gradient descent itself and

integrating discrete solvers into continuous functions. Together, the chapters in this thesis

contribute novel proposals for non-differentiable neural network generation mechanisms,

significant improvements to existing differentiable network generation mechanisms, and an

assimilation of different learning paradigms in autogenerative networks.

Table of Contents

Acknowledgments . 1

Motivation . 1

Chapter 1: Overview . 5

1.1 Preliminaries . 5

1.1.1 Limits of Recursive Computation . 5

1.1.2 Importance of Good Representations . 6

1.2 Overview of Common Deep Learning Methods 8

1.3 Related Work . 11

1.3.1 Early Prior Work (Pre-2000s) . 11

1.3.2 Recent Prior Work . 11

1.4 Summary of Our Contributions . 14

1.5 Publications . 18

Chapter 2: Neural Network Quine . 20

2.1 Introduction . 20

2.1.1 Motivations . 21

2.1.2 Related Work . 22

2.2 Building the Network . 23

i

2.2.1 How can a neural network refer to itself? 23

2.2.2 Vanilla Quine . 23

2.2.3 Auxiliary Quine . 26

2.3 Training the Network . 27

2.3.1 Network Architecture . 27

2.3.2 How do we train a neural network quine? 27

2.4 Results and Discussion . 29

2.4.1 Vanilla Quine . 29

2.4.2 Is this a quine? . 31

2.4.3 Hill-climbing . 31

2.4.4 Generational Replication . 32

2.4.5 Auxiliary Quine . 33

2.5 Conclusion . 35

Chapter 3: Agent Embeddings . 37

3.1 Introduction . 37

3.1.1 Our Contribution . 38

3.2 Related Work . 39

3.2.1 Interpretability . 39

3.2.2 Generative Modeling . 40

3.2.3 Meta-Learning . 40

3.2.4 Bayesian Neural Networks . 41

3.3 Learning Agent Embeddings for Cart-Pole . 41

ii

3.3.1 Supervised Generation . 41

3.3.2 Cart-Pole . 41

3.3.3 CartPoleNet . 42

3.3.4 CartPoleGen . 43

3.3.5 Sampling from CartPoleGen . 44

3.4 Experimental Results and Discussion . 46

3.4.1 Convergent Learning . 46

3.4.2 Exploring the Latent Space . 49

3.4.3 Repairing Missing Weights . 51

3.5 Limitations of Supervised Generation . 53

3.5.1 High Sample Complexity . 53

3.5.2 Subpar Model Performance . 54

3.5.3 Scaling Issues . 54

3.6 Potential Applications for AI . 55

3.7 Conclusion . 56

Chapter 4: Hypernetwork Initialization . 57

4.1 Introduction . 57

4.2 Preliminaries . 59

4.2.1 Ricci Calculus . 59

4.2.2 Xavier Initialization . 59

4.2.3 Kaiming Initialization . 60

4.3 Review of Current Methods . 61

iii

4.4 Hyperfan Initialization . 62

4.4.1 Hyperfan-in . 63

4.4.2 Hyperfan-out . 64

4.5 Experiments . 65

4.5.1 Feedforward Networks on MNIST . 66

4.5.2 Continual Learning on Regression Tasks 67

4.5.3 Convolutional Networks on CIFAR-10 . 68

4.5.4 Bayesian Neural Networks on ImageNet 69

4.6 Conclusion . 70

Chapter 5: Hypernetwork Optimization . 72

5.1 Introduction . 72

5.2 Catalog of hypergenerative Networks . 72

5.3 Stability under Hypergeneration . 75

5.4 Experiments . 75

5.5 Conclusion . 76

Chapter 6: Gradient-Based Meta-Learning . 77

6.1 Introduction . 77

6.2 Review of Gradient-Based Meta-Learning . 80

6.2.1 MAML . 81

6.2.2 Meta-SGD . 82

6.2.3 MAML++ . 82

6.2.4 Regularization Methods . 83

iv

6.3 Insights from Multi-Task Learning . 84

6.3.1 Multi-Task Learning Regularizes Meta-Learning 84

6.3.2 Meta-Learning Complements Multi-Task Learning 84

6.3.3 Applying Multi-Task Learning Asynchronously 85

6.4 Gradient Sharing . 86

6.5 Experimental Results and Discussions . 88

6.5.1 Acceleration of Meta-Training . 89

6.5.2 Bigger Inner Loop Learning Rates . 89

6.5.3 Comparable Meta-Test Performance . 90

6.5.4 Evolution of m and , through Meta-Training 91

6.6 Conclusion . 92

Chapter 7: Logical Networks . 95

7.1 Introduction . 95

7.1.1 Our Contribution . 98

7.2 Background . 100

7.2.1 SATNet . 100

7.2.2 Visual Sudoku . 100

7.3 SATNet Fails at Symbol Grounding . 101

7.3.1 The Absence of Output Masking . 101

7.3.2 Visual Sudoku . 103

7.4 MNIST Mapping Problem . 104

7.4.1 Configuring SATNet Properly . 105

v

7.5 Conclusion . 108

Directions for Future Work . 110

References . 128

Appendix A: Supplementary Information for Chapter 4 129

A.1 Re-using Hypernet Weights . 129

A.1.1 For Mainnet Weights of the Same Size . 129

A.1.2 For Mainnet Weights of Different Sizes 129

A.2 More Experimental Details . 131

A.2.1 Feedforward Networks on MNIST . 131

A.2.2 Continual Learning on Regression Tasks 140

A.2.3 Convolutional Networks on CIFAR-10 . 140

A.2.4 Bayesian Neural Network on ImageNet 141

Appendix B: Supplementary Information for Chapter 6 142

B.1 More Experimental Details . 142

B.1.1 Loading the CUB and MiniImagenet Data 142

B.1.2 Model Backbone . 142

B.1.3 Meta-Training . 142

B.2 More Plots . 143

B.2.1 Meta-Validation Plots . 143

B.2.2 Meta-Test Accuracy . 143

B.2.3 Momentum m and Lambda , Variables 144

vi

Appendix C: Supplementary Information for Chapter 7 153

C.1 Solution to the Raven’s Matrix puzzle . 153

C.2 Related Work on Non-Visual Sudoku . 154

C.3 Experimental Settings . 154

C.3.1 SATNet Fails at Symbol Grounding . 154

C.3.2 MNIST Mapping Problem . 155

C.4 More Experimental Results for the MNIST Mapping Problem 156

C.4.1 Non-SATNet Baseline . 156

C.4.2 Experiment 1 . 156

C.4.3 Experiment 2 . 157

C.4.4 Experiment 3 . 157

C.4.5 Experiment 4 . 157

vii

Acknowledgements

The research endeavor undertaken in this PhD was made possible by the kind guidance

from my advisor, Prof. Hod Lipson, and the support of my colleagues in the Creative Machines

Lab. I also wish to thank the following people for their contribution to the papers that we

submitted during the course of my PhD: Siyuan Chen, Robert Kwiatkowski, Yuling Yao, David

Williams-King, Lampros Flokas, and Michael Spranger. The funding for my PhD was generously

provided by the Fu Foundation Presidential Distinguished Fellowship, the US Defense Advanced

Research Project Agency (DARPA) Lifelong Learning Machines Program (grant

HR0011-18-2-0020), and the Columbia Computer Science department.

viii

Motivation

The Threat of Artificial Intelligence The doomsday scenario where machines take over

the world has been laid out repeatedly in science fiction. In the Matrix, our robot overlords have

enslaved most humans in virtual reality to feed on us as a source of energy. In Ex Machina, a rogue

AI charms her way into convincing a human test participant to let her out of the lab, leading her

to kill all the researchers involved and escape out into the world. In Terminator, the AI defense

system known as Skynet becomes self-aware, and initiates a nuclear holocaust.

In light of breakthroughs made in deep learning in recent years, Elon Musk has likened AI

research to ‘summoning the demon’, warning that it is humankind’s ‘biggest existential threat’ [1],

while Stephen Hawking cautioned that it could ‘spell the end of the human race’ [2]. They were

both signatories to a decidedly less apocalyptic but nevertheless ominous open letter [3], co-signed

by many machine learning and computer science luminaries, entreating the urgent need for AI

research to be focused on safety and robustness.

Figure 1: Science fiction portrayal of the dangers of AI

1

Figure 2: Screenshot of a subset of the over 8000 people who have signed the open letter on AI
safety

Singularity Hypothesis In theory, how might AI become super-intelligent? How might a

computer reach and subsequently surpass human-level abilities in a wide range of tasks?

One line of thought goes as follows: Humans will keep improving AI technology so long as

automation brings economic and military benefits to society. The progress in AI technology will

occur at a higher rate than progress in human knowledge and intelligence. At some point in the

future (known as the Singularity), an AI agent will develop the powerful ability to design a more

intelligent AI agent. This self-improvement ability will then be applied recursively over successive

generations, culminating in what the statistician I. J. Good terms an ‘intelligence explosion.’ [4]

This is known as the Singularity Hypothesis.

2

For context, most machine learning researchers do not think it is very probable. [5] surveyed

352 researchers who published at the 2015 NeurIPS and ICML conferences (21% of the 1634

authors), and asked them for their subjective probability of the Singularity happening two years

after ‘unaided machines can accomplish every task better and more cheaply than human workers.’

The median probability was found to be 10%, even though 48% of respondents agreed with the

claim that ‘society should prioritize research aimed at minimizing the potential risks of AI.’

Recursive Self-Improvement Humans have the ability to improve themselves, for exam-

ple, by reading a book to acquire new knowledge. The potential for recursive self-improvement,

however, is constrained by the biological realities of a limited memory and a physical body that

deteriorates over time and ultimately dies. A priori, there is no reason to think that such constraints

will apply to an AI — it can copy its software to a new hard drive and build a new robot to house

its ‘mind’ before ‘dying.’

We can conceive of an AI as fundamentally being a computer program written in a given

programming language.

One of the hallmarks of a mature programming language is the ability to compile the language

in the language itself (i.e. bootstrapping). For example, the first Python compiler, CPython, which

is also the reference implementation, is written in C. But eventually, it became feasible to build a

Python compiler in Python itself. PyPy is the most prominent such example, and surprisingly (or

not), it is actually (∼7x) faster than CPython on a wide range of benchmarks using techniques like

meta-JIT and meta-tracing [6].

In his Turing award lecture, [7] described a compiler that can ‘learn’ new patterns via first

adding in new source code to encode the pattern, and later compiling itself to erase traces of

ever having added the source code. This seems to be a good blueprint for how recursive self-

improvement would manifest itself in computer programs. To recursively self-improve itself, a

computer program needs at minimum to be a program-handling program, whether that is a com-

piler, an assembler, a loader, a linker, or even hardware microcode. A compiler is the most plau-

sible candidate for a recursively self-improving AI, because it has the capability of reading its

3

own source code and modifying it. But that is not the only possibility, since humans can improve

themselves without being able to read and modify genes or neural connections.

Neural Networks Generating Neural Networks Deep learning, also known as artificial

neural networks, represents the most powerful form of AI known to date. Deep learning pro-

grams have shown superhuman performance in domains as diverse as image recognition [8], speech

recognition [9], Atari games [10], and Go competitions [11], while displaying near-human perfor-

mance in speech synthesis [12] and machine translation [13], among numerous other tasks. Fur-

thermore, deep learning has also powered state of the art generative modeling techniques capable

of synthesizing photo-realistic images [14], human-like speech [12], natural language sentences

[15], temporally consistent videos [16], and even protein structures [17], among other objects of

interest.

The ultimate challenge, however, is not generating images, or audio, or video. The ultimate

challenge for a neural network generator is to generate other neural networks. Deep neural net-

works thus present a unique opportunity to explore the potential for recursive self-improvement

in deep learning programs. We term the concept of neural network based generation of neural

networks Autogenerative Networks, and it is the primary object of research interest in this thesis.

4

Chapter 1: Overview

1.1 Preliminaries

1.1.1 Limits of Recursive Computation

One way a program P can improve itself it to first diagnose if it can solve task T, and then make

steps towards learning how to solve it if it cannot do so already. If T is the question of determining

whether an arbitrary program will eventually halt given enough time, then this is an impossible

task, since the Halting Problem is undecidable.

This implies that there are certain theoretical limits inherent in recursive computation. We note

four relevant results in the theory of computation that demarcate the expressiveness of program-

handling programs and neural networks in general.

Firstly, [18] prove the non-existence of universality for a large class of finite state automata.

A Turing Machine is known to be universal (i.e. it can simulate other Turing Machines), but it is

unclear if there are automata weaker than a Turing Machine that can simulate other automata in its

class.

Secondly, Rice’s theorem states that non-trivial properties about Turing Machines are unde-

cidable (by Turing Machines). More specifically, given some non-trivial language L (i.e. there

exists a Turing Machine that recognizes L and there exists a Turing Machine that recognizes its

complement), it is impossible to decide if an arbitrary Turing Machine belongs to L.

Thirdly, feed-forward neural networks are known to be universal function approximators. Specif-

ically, a neural network with one hidden layer can approximate any continuous function on a com-

pact subset of Euclidean space, to any degree of precision [19, 20]. This is done via a two-step

process: (1) Sigmoidal activation functions can approximate a step function given appropriate

choice of weights, (2) Any continuous function on a compact subspace can be approximated with

5

a combination of step functions.

Fourthly, recurrent neural networks have been shown to be Turing Complete [21]. 2-way Push-

down Automata are computationally equivalent to a Turing Machine, and with suitable choice of

weights, there exists a recurrent network that can emulate a 1-way Pushdown Automata. Turing

completeness can hence be achieved by assimilating two recurrent networks into one.

1.1.2 Importance of Good Representations

Before a neural network can operate on another neural network, it has to have a mechanism for

reading in a neural network as data.

Humans understand concepts in different levels of abstraction, and the wrong level of abstrac-

tion will often prevent understanding from taking place at all. As one example, probing the voltage

levels in the circuitry of a microprocessor, which is akin to probing neural spike trains in a brain,

makes it very difficult to understand anything about the actual information processing done by the

microprocessor [22].

Likewise, a program has to be given data in the appropriate encoding for it to process the data

efficiently and successfully. NLP researchers found that using one-hot vectors to encode words in a

vocabulary leads to sparse representations and do not meaningfully describe the semantic similarity

of related words. The use of word embeddings circumvent this problem by learning linear latent

structures. Famously, [23] showed that ‘King’ − ‘Queen’ is similar to ‘Man’ − ‘Woman.’ Going

further, subword level embeddings have proved useful in named entity recognition [24], part-of-

speech tagging [25], dependency parsing [26], among other common NLP tasks.

Clearly, finding the ‘right’ data representations for a neural network is essential to the success

of autogenerative Networks.

[27] proposed NeuroEvolution of Augmenting Topologies (NEAT) as a method to implement

Topology and Weight Evolving Artificial Neural Networks (TWEANNs), representing the connec-

tions and weights in a neural network (phenotype) as an annotated string (genotype). The string is

annotated with historical markers that track when a new connection is made or when a new neu-

6

ron is introduced into the network. This helps to allow (1) disparate topologies to cross over in a

meaningful way, (2) preserve topological innovation so that niches do not disappear prematurely,

and (3) minimize topologies without the need for a fitness function that measures complexity.

Figure 1.1: Depiction of NEAT

Many extensions to the basic NEAT algorithm have been proposed.

HyperNEAT [28] uses a Compositional Pattern Producing Network (CPPN) to indirectly en-

code the network by mapping each connection with a weight, allowing symmetries in the CPPN to

generate weights for bigger networks without further training. In a Differentiable Pattern Produc-

ing Network (DPPN), the topology is evolved while the weights are learned via backpropagation

[29]. When the DPPN was used to produce the weights for a denoising autoencoder trained on

images, an approximate convolutional structure was found embedded within the fully connected

architecture. While NEAT is a direct encoding, the use of CPPN and DPPN represents indirect

encodings since a coordinate system is needed to reproduce the neural network from the encoding.

DeepNEAT encodes connections between layers instead of individual neurons, the type of each

layer (convolutional, fully connected, or recurrent), properties of each layer (number of neurons,

kernel size, activation function, etc), and a table of weights for each layer. CoDeepNEAT uses

DeepNEAT as a subroutine, and co-evolves the topology, components and hyperparameters of a

deep neural network, allowing neuroevolution to optimize different pieces of the model all at once

[30]. [31] use a similar strategy to represent possible neural networks as data, but opts to use

7

reinforcement learning instead of evolution to select components for the network.

While NEAT itself used evolution to optimize both the topology and weights of the network,

modern extensions of NEAT use evolution to optimize the topology, while using backpropagation

to optimize the weights. This suggests that it might not be necessary to optimize the topology and

the weights simultaneously. It is possible to first train an overparametrized model and subsequently

(1) compress it to a smaller model [32], (2) use it as a teacher model to guide the training of a

slimmer student model [33, 34], or (3) selectively use different portions of the large network for

different tasks and settings [35, 36, 37, 38]. Some recent (empirical) evidence even suggests that

we need large networks to maximize the chances of success for gradient descent based optimization

[39].

Finally, [40] proposed to view a neural network as essentially different modules of weights and

examined different orderings for re-using these weights. [41] proposed the memory bank encoding,

which views different neural network operations as reading and writing to a memory bank.

Figure 1.2: Memory Bank encoding for ResNet, DenseNet, and FractalNet

1.2 Overview of Common Deep Learning Methods

In this section, we briefly cover some of the main deep learning based methods that appear in

the rest of the thesis.

Adam is an optimizer based on stochastic gradient descent. It scales the gradient 6C at every

time step using a running mean (with multiplicative weights V1, V2) of the first and second order

8

raw moments <C , EC .

<C = V1<C−1 + (1 − V1)6C

EC = V2EC−1 + (1 − V2)62
C

<̂C =
<C

1 − VC1
ÊC =

EC

1 − VC2
\C = \C−1 − U

<̂C√
ÊC + n

(1.1)

Batch Normalization is a regularization mechanism that centers the activations of each layer

in a neural network using batch statistics to mitigate layer-wise covariate shift. It stores a running

mean of these statistics during training time to be used at test time. After the normalization, it uses

learnable parameters W and V to scale and shift the normalized activations.

`B =
1
<

<∑
8=1

G8

f2
B =

1
<

<∑
8=1
(G8 − `B)2

Ĝ8 =
G8 − `B√
f2
B + n

BN(G8)W,V = H8 = WĜ8 + V

(1.2)

Dropout is a regularization mechanism that randomly drops activations with probability ? at

training time. At test time, none of the activations are dropped, but we scale them by 1 − ? so that

their order of magnitude is similar on expectation to that at training time.

Dropout(G8) = 1IG8, I ∼ Bernoulli(1-p) (1.3)

9

Gradient-based Meta-Learning MAML is the canonical algorithm upon which most gradient-

based meta-learning methods are founded. Given) tasks and steps of gradient descent, MAML

backpropagates through the gradient descent process itself for each task to compute a meta-gradient

that is then used to make weight updates.

\C,0 = \

\C,: = \ − U∇\:−1LC (\:−1)

\ = \ − V
∑
C

∇\LC (\)

(1.4)

Hypernetworks are meta neural networks � parametrized by q that generate the weights \ of

a main neural network � from some embedding 4 to minimize a given task loss L. Since q are the

model parameters in this case, gradient descent optimizes q and not \.

\ = �q (4)

q = q − ∇qL(�\)
(1.5)

Variational Auto-Encoders are auto-encoders that constrain the latent space to be close to a

Gaussian by optimizing a variational lower bound on the marginal likelihood. This resolves to a

variational term and the reconstruction loss (hence, the name variational auto-encoder).

L(\) = 1
2

�∑
9=1

(
1 + logf2

9 − `2
9 − f2

9

)
+ 1
!

!∑
;=1

log ?\ (G |I), I = ` + fn, n ∼ N(0, �) (1.6)

10

1.3 Related Work

1.3.1 Early Prior Work (Pre-2000s)

Early prior work from researchers that we consider machine learning luminaries today pro-

posed several candidates for an autogenerative network. Jurgen Schmidhuber’s PhD thesis was

titled “Evolutionary Principles in Self-Referential Learning” [42], which proposed programming

recursively self-improving genetic algorithms. He also proposed reinforcement learning with self-

modifying policies [43], and neural networks that can modify their own weights [44]. Yoshua

Bengio proposed to parametrize the learning rule for a neural network, and then meta-learn the

learning rule itself by optimizing those parameters with an evolutionary algorithm [45, 46]. Sebas-

tian Thrun described multiple different approaches to meta-learning including multi-task learning

(using a single algorithm to learn to solve multiple tasks at the same time by sharing knowledge)

and continual learning (sequential, rather than simultaneous, multi-task learning where the chal-

lenge is to not forget previously encountered tasks) [47].

1.3.2 Recent Prior Work

While early prior work mostly involved abstract thought experiments and proofs of concept,

recent prior work tends to make specific and concrete contributions to a specific application of

meta-learning with neural networks.

A quote from Richard Hamming’s talk titled ‘Learning to Learn: You and Your Research’ [48]

is appropriate here. Hamming says:

“In all the 30 years I spent at Bell Telephone Laboratories (before it was broken up)

no one to my knowledge worked on time travel, teleportation, or anti-gravity. Why?

Because they had no attack on the problem. Thus an important aspect of any problem

is that you have a good attack, a good starting place, some reasonable idea of how to

begin.”

11

Making true progress on abstract ideas like autogenerative networks is difficult, and the best

way to accomplish this ambitious research program might be to identify and work on small well-

defined problems along the way. Below, we enumerate a non-exhaustive list of such research

problems:

1. Hyperparameter Optimization We can use a meta neural network to model the search

space for the hyperparameters of a different neural network [49]. [31] used a policy gra-

dient neural network as a reinforcement learning agent to select architectural choices (like

the width of the convolution kernel or the operations in a recurrent cell) in the design of

another neural network. This is known as ‘Neural Architecture search’ (NAS). NAS is ex-

tremely computationally demanding. Using NAS to find a good convolutional architecture

for CIFAR-10 required training and comparing between 12800 different deep neural net-

works. Several efficiency improvements to the original idea have since been proposed. [50]

used a surrogate function to estimate the performance of an NAS candidate before training it,

thus reducing the number of candidates (5x reduction) that have to be evaluated. [51] made

the observation that each component of a candidate network did not have to be trained from

scratch each time. Training time can be drastically reduced (a 1000x reduction) by starting

training from the weights of the component in another candidate network. [52] proposed to

make NAS a differentiable process through a continuous relaxation of the discrete actions

made by the reinforcement learning agent. [53] used NAS-like techniques to compress ex-

isting models by searching for models under compute constraints. Furthermore, there have

been proposals to turn NAS into a one-shot learning problem through the use of a hyper-

network [41], and the use of a single giant network that selectively drops out components

[35, 37]. For a more comprehensive survey on NAS, please refer to [54]. NAS is arguably

the most active area of research into autogenerative networks in the machine learning com-

munity, thus we made a conscious decision to avoid it in this thesis and instead attend to

under-studied applications of autogenerative networks in our research.

2. Hypernetworks [55] coined the term ‘Hypernetwork’ to describe a meta neural network

12

Figure 1.3: Neural Architecture Search

that generates the weights of a main neural network with a differentiable function. This

allows changes in the weights of the generated main network to be backpropagated to the

hypernet itself. Hypernetworks were originally intended as a model compression mechanism

through soft weight-sharing, where the meta network essentially compresses the much larger

number of model parameters in the main network into a significantly smaller model. Today,

hypernetworks have found numerous applications including but not limited to: weight prun-

ing [56], neural architecture search [41, 57], Bayesian neural networks [58, 59, 60, 61, 62],

multi-task learning [63, 64, 65, 66, 67], continual learning [68], generative models [69, 70],

ensemble learning [71], hyperparameter optimization [72], and adversarial defense [73].

3. Transfer Learning The meta network can store information from previously encountered

tasks and generate neural networks that adapt that information to the task at hand [74, 75].

NAS can be seen as an example of transfer learning, since we typically learn the architecture

by training on one dataset, but then transfer that knowledge by testing on a different dataset.

Instead of doing a search over all possible architectures, it is also possible to fix a given

architecture and allow a certain component of the architecture to vary. This component is

said to be meta-learned, since it is learned by another neural network instead of fixed by a

human designer. [74, 75] used an external LSTM to meta-learn the optimization function

13

used to update a child network. [76] used NAS-like techniques to meta-learn an activation

function. The Discriminator in Generative Adversarial Networks [77] can be thought of as a

network that meta-learns the cost function in place of the standard cross-entropy loss.

4. Few-Shot Learning Humans learn using small number of examples, which is a stark

contrast to the vast number of labeled training examples a deep neural network needs for

supervised learning. Machine learning, under training conditions that are limited to small

number of training examples, is known as ‘Few-Shot Learning’. While the number of data

points is small, the number of datasets can be comparatively large to enable transfer learning.

This can be done using model-based methods like a hypernetwork, as described above [41],

or through gradient-based methods where we treat gradient descent itself as a differentiable

function and backpropagate through it [78].

5. Multi-Task Learning More broadly, instead of having a strict distinction between a meta

network and a task network, we can also have a very large meta network that contains small

module networks that adapt to a given task [48]. When trained on multiple different tasks

at once, this is known as ‘Multi-Task Learning’. When trained on these tasks in a sequen-

tial fashion, multi-task learning is known as ‘Continual Learning’ or ‘Lifelong Learning’.

This scenario is arguably more challenging because of the tendency for neural networks to

memorize recent information and forget past information [79]. One way to overcome such

catastrophic forgetting is to use a hypernet to generate networks conditioned on a task em-

bedding where the generation process can be regularized to minimize forgetting [68].

1.4 Summary of Our Contributions

In this thesis, we choose to study various different themes surrounding autogenerative net-

works that are relatively under-studied by the academic community. The major difference between

early prior work and recent work is that the former is too abstract and conducted using many

thought experiments, while the latter might be overly focused on specific applications. In this PhD

14

thesis, we walk the middle ground by exploring ideas that might seem overly ambitious for imme-

diately practical applications, but are nonetheless grounded in specific empirical experiments.

In Chapter 2, we start by training neural networks that can generate individual weights for

another network. When turned on itself, these techniques enable a computational model for self-

replication, and have been used in chemical simulations [80]. In Chapter 3, we generate, from em-

beddings, entire neural networks instead of individual weights, and show how they can be used to

improve the interpretability of reinforcement learning agents. The methods of neural network gen-

eration used in Chapters 2 and 3 do not scale well to big models, because of the non-differentiability

of the generation process. Therefore, in Chapters 4 and 5, we study initialization and optimization

issues in hypernetworks respectively, and propose solutions to some of these problems while high-

lighting remaining open challenges. Finally, we turn to implicit models of network generation like

gradient-based meta-learning (Chapter 6), where we generate the gradients and not the weights,

and logical networks (Chapter 7), which combine both discrete and continuous optimization in a

single neural network.

Together, the chapters in this thesis contribute novel proposals for non-differentiable neu-

ral network generation mechanisms, significant improvements to existing differentiable net-

work generation mechanisms, and an assimilation of different learning paradigms in auto-

generative networks.

Below, we provide a more in-depth summary for each of the upcoming chapters in this thesis.

Chapter 2: Neural Network Quine We describe how to build and train self-replicating neu-

ral networks. The network replicates itself by learning to predict its own weights via a loss function

that can be optimized with either gradient-based or non-gradient-based methods. We also describe

a method called generational replication to train the network without explicit optimization by in-

jecting the network with predictions of its own parameters. The best solution for a self-replicating

network was found by alternating between generation and optimization steps. Finally, we describe

a design for a self-replicating neural network that can solve an auxiliary task like MNIST image

classification. Interestingly, we observe that there is a trade-off between the network’s ability to

15

classify images and its ability to replicate, but training is biased towards increasing its specializa-

tion at image classification at the expense of replication. This is analogous to the trade-off between

reproduction and survival observed in nature. Among other reasons, a replication mechanism for

artificial intelligence is useful because it introduces the possibility of intelligent artificial life, al-

lowing for self-improving AI agents where improvements result via natural selection.

Chapter 3: Agent Embeddings We show that it is possible to reduce a high-dimensional

object like a neural network agent into a low-dimensional vector representation with semantic

meaning that we call agent embeddings, akin to word or face embeddings. This can be done by

collecting examples of existing networks, vectorizing their weights, and then learning a generative

model over the weight space in a supervised fashion. We investigate a pole-balancing task, Cart-

Pole, as a case study and show that multiple new pole-balancing networks can be generated from

their agent embeddings without direct access to training data from the Cart-Pole simulator. In

general, the learned embedding space is helpful for mapping out the space of solutions for a given

task. We observe in the case of Cart-Pole the surprising finding that good agents make different

decisions despite learning similar representations, whereas bad agents make similar (bad) decisions

while learning dissimilar representations. Linearly interpolating between the latent embeddings for

a good agent and a bad agent yields an agent embedding that generates a network with intermediate

performance, where the performance can be tuned according to the coefficient of interpolation.

Linear extrapolation in the latent space also results in performance boosts, up to a point.

Chapter 4: Hypernetwork Initialization Hypernetworks are meta neural networks that

generate weights for a main neural network in an end-to-end differentiable manner. Despite ex-

tensive applications ranging from multi-task learning to Bayesian deep learning, the problem of

optimizing hypernetworks has not been studied to date. We observe that classical weight initial-

ization methods like [81] and [82], when applied directly on a hypernet, fail to produce weights

for the mainnet in the correct scale. We develop principled techniques for weight initialization in

hypernets, and show that they lead to more stable mainnet weights, lower training loss, and faster

convergence.

16

Chapter 5: Hypernetwork Optimization Training hypernetworks by gradient descent re-

sults in different update rules for the main network due to the reparametrization. We study a special

class of replicator hypernetworks called hypergenerative networks where both the input and output

are the same neural network, and derive update rules for simple hypernetwork architectures. Dif-

ferent hypergenerative networks give rise to different update rules depending on their architecture,

and it can be shown that standard gradient descent falls under a special case. Interestingly, we

show that some of these update rules can be generalized so that when they are applied in a recur-

sive fashion to train the hypernetworks, we recover the original updates. We verify experimentally

that some of these non gradient descent update rules can be used to train big neural networks

successfully with comparable levels of accuracy as standard gradient descent.

Chapter 6: Gradient-Based Meta-Learning The success of gradient-based meta-learning

is primarily attributed to its ability to leverage related tasks to learn task-invariant information.

However, the absence of interactions between different tasks in the inner loop leads to task-specific

over-fitting in the initial phase of meta-training. While this is eventually corrected by the presence

of these interactions in the outer loop, it comes at a significant cost of slower meta-learning. To

address this limitation, we explicitly encode task relatedness via an inner loop regularization mech-

anism inspired by multi-task learning. Our algorithm shares gradient information from previously

encountered tasks as well as concurrent tasks in the same task batch, and scales their contribution

with meta-learned parameters. We show using two popular few-shot classification datasets that

gradient sharing enables meta-learning under bigger inner loop learning rates and can accelerate

the meta-training process by up to 134%.

Chapter 7: Logical Networks SATNet is an award-winning MAXSAT solver that can be

used to infer logical rules and integrated as a differentiable layer in a deep neural network [83].

It had been shown to solve Sudoku puzzles visually from examples of puzzle digit images, and

was heralded as an impressive achievement towards the longstanding AI goal of combining pattern

recognition with logical reasoning. In this chapter, we clarify SATNet’s capabilities by show-

ing that in the absence of intermediate labels that identify individual Sudoku digit images with

17

their logical representations, SATNet completely fails at visual Sudoku (0% test accuracy). More

generally, the failure can be pinpointed to its inability to learn to assign symbols to perceptual phe-

nomena, also known as the symbol grounding problem [84], which has long been thought to be a

prerequisite for intelligent agents to perform real-world logical reasoning. We propose an MNIST

based test as an easy instance of the symbol grounding problem that can serve as a sanity check

for differentiable symbolic solvers in general. Naive applications of SATNet on this test lead to

performance worse than that of models without logical reasoning capabilities. We report on the

causes of SATNet’s failure and how to prevent them.

1.5 Publications

Some of the research in this thesis has been published and presented at conferences and work-

shops. We list the relevant papers below:

1. Chang, O., & Lipson, H. (2018). Neural Network Quine. In Artificial Life Conference

Proceedings (pp. 234-241). One Rogers Street, Cambridge, MA 02142-1209 USA journals-

info@mit.edu: MIT Press.

2. Chang, O., Kwiatkowski, R., Chen, S., & Lipson, H. (2019). Agent Embeddings: A La-

tent Representation for Pole-Balancing Networks. In Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems (pp. 656-664). International

Foundation for Autonomous Agents and Multiagent Systems.

3. Chang, O., Flokas, L., & Lipson, H. (2019). Principled Weight Initialization for Hypernet-

works. In Proceedings of the International Conference on Learning Representations. Oral

Presentation (top 1.9% of 2594 papers).

4. Chang, O., Flokas, L., & Lipson, H. (2020). Accelerating Meta-Learning by Sharing Gradi-

ents. BeTR-RL Workshop at ICLR 2020.

18

5. Chang, O., Flokas, L., Lipson, H., & Spranger, M. (2020). Assessing SATNet’s Ability to

Solve the Symbol Grounding Problem. In Proceedings of the Thirty-fourth Annual Confer-

ence on Neural Information Processing Systems.

19

Chapter 2: Neural Network Quine

2.1 Introduction

The concept of an artificial self-replicating machine was first proposed by John von Neumann

in the 1940s prior to the discovery of DNA’s role as the physical mechanism for biological replica-

tion. Specifically, Von Neumann demonstrated a configuration of initial states and transformation

rules for a cellular automaton that produces copies of the initial cell states after running for a fixed

number of steps [85]. [86] later coined the term ‘quine’ in Gödel, Escher, Bach: an Eternal Golden

Braid after the philosopher Willard Van Orman Quine, to describe self-replicating expressions such

as: ‘is a sentence fragment’ is a sentence fragment.

In the context of programming language theory, quines are computer programs that print their

own source code. A trivial example of a quine is the empty string, which in most languages, the

compiler transforms into the empty string. The following code snippet is an example of a non-

trivial Python quine written in two lines.

s = ’s = %r\nprint(s%%s)’

print(s%s)

In this chapter, we identify and solve the challenges involved in building and training a self-

replicating neural network. Specifically, we propose to view a neural network as a differentiable

computer program composed of a sequence of tensor operations. Our objective then is to construct

a neural network quine that prints its own weights.

We tested our approach using three distinct classes of methods: gradient-based optimization

methods, non-gradient-based optimization methods, and a novel method called generational repli-

cation. We further designed a neural network quine which has an auxiliary objective in addition to

20

the job of self-replication. In this chapter, the chosen auxiliary task is MNIST image classification

[88], which involves classifying images of digits from 0 to 9, and is commonly used as a ‘hello

world’ example for machine learning.

We observed a trade-off between the network’s ability to self-replicate and its ability to solve

the auxiliary task. This is analogous to the trade-off between reproduction and survival observed

in nature. The two objectives are usually aligned, but for example, when an animal has been put

in starving conditions, its sex hormones are usually down-regulated to optimize for survival at the

expense of reproduction. The opposite occurs as well: for example, in male dark fishing spiders,

the act of copulation results in a sudden irreversible change to its blood pressure, immobilizing it

and leaving it vulnerable to cannibalization by the female spider [89].

2.1.1 Motivations

Modern artificial intelligence is primarily powered by deep neural networks for applications as

diverse as tracking moving objects [90], detecting diabetic retinopathy [91], synthesizing human-

like speech [12, 92], and executing strategic decisions in Starcraft [93]. In line with the ambition

of going beyond current AI technology, we list several motivations for studying self-replicating

neural networks.

• Biological life began with the first self-replicator [94], and natural selection kicked in to fa-

vor organisms that are better at replication, resulting in a self-improving mechanism. Anal-

ogously, we can construct a self-improving mechanism for artificial intelligence via natural

selection if AI agents had the ability to replicate themselves.

• Neural networks are capable of learning powerful representations across many different do-

mains of data [95]. But can a neural network learn a good representation of itself? Self-

replication involves a degree of self-awareness, and can be viewed as enforcing a soft weight-

sharing constraint between a network and past versions of itself, which is helpful for lifelong

learning.

21

• Learning how to enhance or diminish the ability for AI programs to self-replicate is useful

for computer security. For example, we might want an AI to be able to execute its source

code without being able to read or reverse-engineer it, either through its own volition or

interaction with an adversary.

• Self-replication functions as the ultimate mechanism for self-repair in damaged physical

systems [96]. The same may apply to AI, where a self-replication mechanism can serve as

the last resort for returning a damaged or out-of-control AI system back to normal.

2.1.2 Related Work

Quines have been written for a variety of programming languages. The Quine Page [97] con-

tains code contributions of quines written in 55 different languages. An Ouroboros set of programs

extends the concept of a quine by having a program in language A generate the source code for a

program in language B, which then generates the source code for a program in a language C, and

so on, until it finally generates back the source code for the initial program in language A. [98]

made an Ouroboros with 128 programming languages in it.

There has also been work done in making physical self-replicators. Notable examples include

molecules [99], polymers [100], and robots [96].

Our work focuses on building a self-replication mechanism via weight prediction. [101] demon-

strated the presence of redundancy in neural networks by using a portion of the weights to predict

the rest. There are also neural networks that can modify the weights of other neural networks [102,

103], which have been shown to be useful in meta-learning an optimizer [75, 74]. [104] proposed

an architecture and a training algorithm for a self-referential recurrent neural network, which is

philosophically very similar to our work in that the network refers to itself rather than another

network. To our knowledge, our work is the first to attempt the task of self-replication in neural

networks.

22

2.2 Building the Network

2.2.1 How can a neural network refer to itself?

Problem with Direct Reference

A neural network is parametrized by a set of parameters Θ, and our goal is to build a network

that outputs Θ itself. This is difficult to do directly. Suppose the last layer of a feed-forward net-

work has � inputs and � outputs. Already, the size of the weight matrix in a linear transformation

is the product �� which is greater than � for any � > 1.

We also looked at open-source implementations of two popular generative models for images,

DCGAN [105] and DRAW [106]. They use 12 million and 1 million parameters respectively to

generate MNIST images with 784 pixels.

In general, the set of parameters Θ is a lot larger than the size of the output. To circumvent this,

we need an indirect way of referring to Θ.

Indirect Reference

HyperNEAT [107] is a neuro-evolution method that describes a neural network by identifying

every topological connection with a coordinate and a weight. We pursue the same strategy in

building a quine. Instead of having the quine output its weights directly, we shall set it up so that

it inputs a coordinate (in a one-hot encoding) and outputs the weight at that coordinate.

This overcomes the problem of Θ being larger than the output, since we are only outputting a

scalar Θ2 for each coordinate 2.

2.2.2 Vanilla Quine

We define the vanilla quine as a feed-forward neural network whose only job is to output its

own weights.

Suppose the number of weights is �, and the number of units in the first hidden layer is �,

then the size of the projection matrix would be the product �� which is greater than � for any

23

Figure 2.1: Structure of a vanilla quine

� > 1. Hence, we cannot have the projection itself be a parameter of the network due to the

one-hot representation. We thus decide to use a fixed random projection to connect the one-hot

encoding of the coordinate to the hidden layer. All other connections, namely the connections

between the hidden layers as well as the connections between the last hidden layer and the output

layer, are variable parameters of the neural network.

Von Neumann argued that a non-trivial self-replicator necessarily includes three components

that by themselves do not suffice to be self-replicators: (1) a description of the replicator, (2) a

copying mechanism that can clone descriptions, and (3) a mechanism that can embed the copying

mechanism within the replicator itself [85]. In this case, the coordinate system that assigns each of

the weights a point in the one-hot space corresponds to (1). The function computed by the neural

network corresponds to (2). The fixed random projection corresponds to (3). We explain below

reasons for our choices of (1), (2), and (3), while keeping in mind that alternatives to them are

interesting future research directions.

(1) One-hot Input Encoding

A one-hot encoding is a vector that contains exactly one 1 and is 0 everywhere else. If we

directly input the coordinate instead of using a one-hot encoding, then the network will not be

sufficiently expressive. This is because for any coordinate 2, the difference between 5 (2) and

5 (2 + 1) is constrained by the network’s Lipschitz bound, hence the network cannot accurately

output the weights at 2 and 2+1 if their difference is sufficiently big. We demonstrate a visualization

of this in Figure 2.2: contiguous weights might be very different, but contiguous outputs cannot be

24

very different.

Figure 2.2: Log-normalized illustration of a quine without one-hot encoding

(2) Multi-Layered Perceptrons

H8 = f8 (,8G8 + 18) (2.1)

Multi-layered perceptrons (MLPs) are feed-forward neural networks that consist of repeated

applications of Equation 2.1, where at the 8th layer of the network, f8 is an activation function,,8

a weight matrix, 18 a bias vector, G8 the input vector, and H8 the output vector. MLPs are known to

be good function approximators, specifically a feedforward neural network with at least one hidden

layer forms a class of functions that is dense in the space of continuous functions under a compact

domain [20, 19]. While not precluding other kinds of generative neural network architectures, this

makes an MLP seem like a suitable candidate for a neural network quine, because we think it is

expressive enough to derive and store a representation of itself.

25

(3) Random Projections

We think random projections are a good choice as an embedding layer to connect a one-hot

representation into the network because of their distance-preserving property [109] and the fact

that random features have been shown to work well both in theory and practice [110]. Indeed,

they form a key component of Extreme Learning Machines [111] which are feed-forward neural

networks that have proven useful in classification and regression problems.

2.2.3 Auxiliary Quine

We define the auxiliary quine to be a vanilla quine that solves an auxiliary task in addition to

self-replication. It is responsible for taking in an auxiliary input and returning an auxiliary output.

Figure 2.3: Structure of an auxiliary quine

In this chapter, we chose image classification as the auxiliary task. The MNIST dataset [88]

contains square images (28 pixels by 28 pixels) of handwritten digits from 0 to 9, which are going

to be what is fed in as the auxiliary input. It is possible to make the connection from the auxiliary

input to the network a parameter rather than a random projection, but in this chapter, we only

report results for the latter. The auxiliary output is a probability distribution over the ten classes,

where the class with the maximum probability will be chosen as the predicted classification. 60000

images are used for training and 10000 images are used for testing; we have no need for a validation

set since we are not strictly trying to optimize for the performance of the classifier. Our primary

aim in this chapter is to demonstrate a proof of concept for a neural network quine, which makes

26

MNIST a suitable auxiliary task as it is considered an easy problem for modern machine learning

algorithms.

2.3 Training the Network

2.3.1 Network Architecture

Before describing how the neural network quines are trained, we specify the exact network

architecture used in our experiments below for both the vanilla quine and the auxiliary quine. In

both cases, they are MLPs composed of two hidden layers with 100 hidden units each where every

layer is followed by a SeLU [112] activation function. In the case of the auxiliary quine, the one-

hot coordinate is projected to the first 50 hidden units, while the MNIST input is projected to the

next 50 hidden units. The auxiliary output is a vector of size 10 (number of classes) computed by

a softmax.

The total number of parameters is 20100 for the vanilla quine, and 21100 for the auxiliary

quine. The nature of the quine problem and our choice of the one-hot encoding means that the

input vector will be of the same size as the number of parameters. These are small networks by

modern deep learning standards where millions of parameters are the norm, but it is a challenge to

handle input vectors with dimensions much larger than 20000.

2.3.2 How do we train a neural network quine?

Self-Replicating Loss

We define the self-replicating loss to be the sum of the squared difference between the actual

weight and its predicted value. A vanilla quine is achieved when this loss is exactly zero. Because

of numerical imprecision errors, we can expect that in practice, optimizing this loss will nonethe-

less result in a number slightly above zero, except for the trivial zero quine where all the weights

are exactly zero to begin with.

!(' =
∑
2∈�

 5Θ(2) − Θ2

2

2
(2.2)

27

Auxiliary Loss

It is possible to jointly optimize an existing loss function with the self-replicating loss so that

a neural network gains the ability to self-replicate in addition to an auxiliary task it specializes

in. We define the auxiliary loss to be the sum of the self-replicating loss !(' and the loss from

the auxiliary task !)0B: , with a hyperparameter _ to scale both losses to a similar magnitude. An

auxiliary quine can be trained by optimizing on the auxiliary loss, but we do not expect to see a

near-zero loss, unless it is also perfect at the auxiliary task. In our MNIST experiment, !)0B: is the

cross-entropy loss, which is commonly used for classification problems.

!�DG = !(' + _!)0B: (2.3)

Training Methods

There are three distinct classes of methods that we can use to train our neural network quines.

• Gradient-based methods Stochastic gradient descent (SGD) and its variants are the workhorse

algorithm for training deep neural networks today. In our case, the loss function is a moving

target, since Θ2 changes after each gradient update. Updating the loss function after every

mini-batch update is expensive. To avoid that, we split the set of possible coordinates into

random mini-batches of size 10, and update the loss function after every training epoch. In

other words, each training epoch will consist of running through the set of all possible coor-

dinates. We do not use a validation set for our experiments, while the test loss is computed

at the end of every training epoch after updating the loss function. Below is pseudo-code

for training a vanilla quine. A similar procedure is used to train an auxiliary quine with !('

replaced with !�DG to account for the auxiliary task.

• Non-gradient-based methods Optimization methods that do not make use of gradient in-

formation can also be used to train neural networks. For example, evolutionary algorithms

have been used successfully to train reinforcement learning agents with over four million pa-

28

Algorithm 1: Pseudo-code for training a vanilla quine via optimization
Initialize set of parameters Θ�
Initialize number of training epochs)
for C ← 0 to) do

ΘC := Θ�
Divide ΘC into random mini-batches
for each mini-batch do

Compute !('
Θ� := optimize(Θ� , !(')

rameters [113, 114]. For the same reasons of computational efficiency as mentioned above,

we shall choose to execute non-gradient-based optimization in mini-batches. (The training

algorithm is identical to the pseudo-code shown above, except with optimize being non-

gradient-based) We only consider hill-climbing in this chapter, which is equivalent to an

evolutionary algorithm with a population frontier of size one.

• Generational Replication Perhaps somewhat surprisingly, it is also possible to train a

vanilla quine without explicitly optimizing for the self-replicating loss. We do so by re-

placing the current set of parameters with the weight predictions made by the quine. Each

such replacement is called a generation. We then alternate between running a generation

and a round of optimization to achieve a low but non-trivial self-replicating loss. We note

that generational replication is sensitive to choices of weight initialization and activation

function.

2.4 Results and Discussion

In the experimental results produced below, we used a mini-batch of size 10 for training. _ in

!�DG and the temperature for the softmax in the auxiliary output are set to 0.01.

2.4.1 Vanilla Quine

We trained a vanilla quine with classical SGD (;A = 0.01), SGD with momentum (;A =

0.01, d = 0.9), ADAM [115], Adagrad [116], Adamax [115], and RMSprop [117] with default

29

Algorithm 2: Pseudo-code for Generational Replication
Initialize set of parameters Θ�
Initialize number of generation epochs �
Initialize number of optimization epochs)
for 6 ← 0 to � do

// Optimization
for C ← 0 to) do

ΘC := Θ�
Divide ΘC into random mini-batches
for each mini-batch do

Compute !('
Θ� := optimize(Θ� , !(')

// Generation
for 2 ← � do

Θ2 := 5Θ� (2)

hyperparameter settings on the self-replicating loss for 30 epochs. The quine was initialized with

the same procedure as in [82], and the initial loss !(' prior to any training was 90.16. We observe

in Figure 2.4 that Adamax performed the best, while Adagrad exhibited increasing loss rather than

plateauing. RMSprop (not plotted) was found to explode the loss right from the start of training.

We carried on training the quine on Adamax for 100 epochs, achieving a best test loss of 32.10 by

the end of training, which is a third of its pre-trained value.

Figure 2.4: Comparison of gradient-based optimization methods used to train a vanilla quine

30

2.4.2 Is this a quine?

It is hard to quantify how significant it is to reduce the self-replicating loss to a third of its

pre-trained value. After all, our goal was to produce a self-replicator, but if the loss we achieved is

not close to zero, then it seems that we have not reached our goal. On the other hand, replication

mechanisms are rarely perfect. Even in nature, replication mechanisms often contain high levels

of noise, sometimes referred to as ‘mutation’.

[118] constructed a mathematical framework to calculate the self-replicating quotient of a repli-

cator, which measures the likelihood of a perfect self-replication happening via the replicator’s

noisy replication mechanism as opposed to it happening by chance. For example, [96] estimate the

self-replicating quotient of Penrose Tiling [119] to be below ;>62 and that of animals to be at least

1020. This framework is useful for distinguishing between trivial and non-trivial replicators, but

present theoretical understanding of the learning dynamics in a neural network does not suffice to

estimate the likelihood of a network being in a certain state.

Another measure we can look at is the average weight prediction margin, which is defined as

the average absolute difference between the weights and the weight predictions. The pre-training

loss of 90.16 corresponds to an average weight prediction margin of 0.067, while the post-training

loss of 32.10 corresponds to an average weight prediction margin of 0.040. This suggests we still

have significant room for improvement. However, it is worth pointing out that the relatively small

pre-training weight prediction margin reflects the fact that modern best practices for the choice of

weight initialization and activation function keep the output in the same order of magnitude as the

input.

2.4.3 Hill-climbing

Next, we use a hill-climbing algorithm to train the vanilla quine. The algorithm works by

iteratively perturbing the parameters of the network with diagonal Gaussian noise and keeping the

perturbation if it results in an improvement. This is equivalent to an evolutionary algorithm with

a population size of 1. In this case, we do not need the gradients, hence the training process only

31

requires the forward and not the backward pass, which makes each training epoch computationally

cheaper. Nonetheless, it takes around 5000 epochs to find a solution that is on par with that found

by classical SGD after 10 epochs. We found that doing hill-climbing on the solution that SGD

converged to improves it significantly, but the same does not hold true for the solution that Adamax

converged to. This suggests that the solution found by Adamax is already a local optima.

Figure 2.5: Training a vanilla quine via hill-climbing

2.4.4 Generational Replication

Finally, we use generational replication to train the vanilla quine, setting) = 1 with Adamax as

the optimizer. Each generation epoch is very computationally expensive as it involves as many for-

ward passes as there are parameters in the network to replace its actual weights with its predictions.

However, one epoch suffices to reduce the test loss substantially, with the best self-replicating loss

of 0.86 found after ten generation epochs. This corresponds to an average weight prediction margin

of 0.0065, which is an order of magnitude better than the best solution found previously.

One might wonder if the solution we found via generational replication might be trivial, i.e.

if it has learned a solution by zero-ing most weights. Indeed, we find that iteratively injecting

the network with its predicted weights has a similar effect as statistical shrinkage. It effectively

learns to reduce the self-replicating loss by shrinking the order of magnitudes of the weights, thus

32

Figure 2.6: Training a vanilla quine via generational replication

creating a small weight prediction margin. Without the optimization step (when) = 0), a visual

inspection of the network reveals that it rapidly converges to the trivial zero quine. However, with

the optimization step, the solution found appears to be non-trivial: the order of magnitude of the

weights are in line with what we would observe in a normal neural network.

Figure 2.7 shows a visualization of the solution found by generational replication.

2.4.5 Auxiliary Quine

We trained an auxiliary quine on the MNIST image classification task with Adamax using the

default hyperparameter settings on 30 epochs. The quine was also initialized with He init, and

the initial loss !�DG prior to any training was 1072.05. We observe in Figure 2.8 that somewhat

counter-intuitively, after the initial drop, the auxiliary loss actually increases over time instead of

converging. This is due to the network prioritizing the task loss !)0B: over the self-replicating

loss !(' despite the fact that it is being optimized on their sum. The same trend is observed

when we repeat the experiment on other gradient-based optimization methods besides Adamax.

After 30 epochs, the network achieved an accuracy of 90.41% on the held-out test set, which is

comparable to the 96.33% achieved by an identical network whose only objective is MNIST image

classification. This shows that self-replication occupies a significant portion of the neural network’s

33

Figure 2.7: Log-normalized illustration of the weights and weight predictions of two hidden layers
in a vanilla quine that has been trained with generational replication

capacity, but it is heartening nonetheless that joint optimization of the objectives is possible. If we

leave the auxiliary quine running, the task loss eventually converges, while ignoring the exploding

self-replicating loss.

This is an interesting finding: it is more difficult for a network that has increased its special-

ization at a particular task to self-replicate. This suggests that the two objectives are at odds with

each other, but that the gradient-based optimization procedure prefers to maximize the network’s

specialization at solving the MNIST task, even at the expense of a reduction in its ability to self-

replicate. (It is not immediately obvious from Figure 2.8, but the first few training epochs reduce

the self-replicating loss too.)

There are parallels to be drawn between self-replication in the case of a neural network quine

and biological reproduction in nature, as well as specialization at the auxiliary task and survival

in nature. The mechanisms for survival are usually aligned with the mechanisms for reproduction,

however when they come into conflict with each other, the survival mechanism usually is priori-

tized at the expense of the reproduction mechanism (except in rare cases like that of the male dark

34

fishing spider).

Hill-climbing progressed too slowly for us to observe anything meaningful, but we do not ex-

pect to observe the same behavior because the algorithm, by definition, does not allow for harmful

changes to the overall loss to be made. Generational replication cannot be used in this case, because

we require the auxiliary input for each generation and random inputs do not work well.

Figure 2.8: Training an auxiliary quine with Adamax

2.5 Conclusion

In this chapter, we have described how to build and train a self-replicating neural network.

Specifically, we proposed to treat the problem of self-replication in a neural network as a problem

of weight prediction, and devised various encoding and training schemes to solve this problem.

This allowed us to create a neural network quine, which akin to a computer program quine, prints

its own source code (weights in this case).

We identify three interesting future directions for research. Firstly, we can seek to improve

weight prediction by assuming a low-rank matrix factorization for the network’s weights as in

[101]. Secondly, we can attempt to build neural network quines using more sophisticated mod-

els and representations, for example a convolutional neural network quine might be interesting.

Thirdly, we can extend the concept of self-replication to universal replication: a neural network

35

that can replicate other neural networks.

36

Chapter 3: Agent Embeddings

3.1 Introduction

Many modern artificially intelligent agents are trained with deep reinforcement learning algo-

rithms [11, 120, 121]. But neural networks have long been criticized for being uninterpretable

black boxes that cannot be relied upon in safety-critical applications [122, 123].

It is important to note, however, that human brains are uninterpretable as well. For example,

we know what a face is, because our brains have evolved to detect facial features, and yet, it is

nearly impossible to communicate in words what a face is. This problem is especially acute for

patients with severe prosopagnosia, who have to rely on other visual cues to identify their friends

and family. In fact, it is also quite difficult to communicate precisely the meaning of words. Try

talking to a philosopher or a translator about what otherwise ordinary words might mean, precisely,

and one can be sure to spark a huge debate.

Nonetheless, it is possible to program a computer to detect faces, by reducing high-dimensional

images of faces into low-dimensional vector representations with semantic meaning [124, 14]. It

is also possible to perform sophisticated natural language processing tasks by representing words

in a high dimensional vocabulary as low-dimensional vectors [125, 126]. Remarkably, these em-

beddings are amenable to simple linear arithmetic. Take the difference between the latent codes

for a face with a mustache and one without a mustache, and one gets something approximating a

‘mustache’ vector. Famously, [125] showed ‘King’ - ‘Queen’ = ‘Man’ - ‘Woman’.

We propose that a similar strategy can be applied to even something as high-dimensional and

complicated as a deep reinforcement learning agent. Our aim is to demonstrate that neural network

agents can be compressed into low-dimensional vector representations with semantic meaning,

which we term agent embeddings. In this chapter, we propose to learn agent embeddings by

37

collecting existing examples of neural network agents, vectorizing their weights, and then learning

a generative model over the weight space in a supervised fashion.

Figure 3.1: Cart-Pole is a game of pole-balancing

3.1.1 Our Contribution

As a proof of concept, we report on a series of experiments involving agent embeddings for

policy gradient networks that play Cart-Pole, a game of pole-balancing.

We present three interesting findings:

1. The embedding space learned by the generative model can be used to answer questions of

convergent learning [127], i.e. how similar are different neural networks that solve the same

task. To our knowledge, we are the first to investigate convergent learning in the context of

reinforcement learning agents rather than image classifiers. We extend [127]’s work on con-

vergent learning by proposing a new distance metric for measuring convergence between two

neural networks. We observe surprisingly that good pole-balancing networks make differ-

ent decisions despite learning similar representations, whereas bad pole-balancing networks

make similar (bad) decisions while learning dissimilar representations.

2. It has been demonstrated that linear structure between semantic attributes exist in the latent

38

space of a good generative model in the domain of natural language words [125] and faces

[14], among other kinds of data. We show that a similar linear structure can be learned in an

embedding space for reinforcement learning agents that can be used to directly control the

performance of the policy gradient network generated.

3. We demonstrate that the generative model can be used to recover missing weights in the

policy gradient network via a simple and straightforward rejection sampling method. More

sophisticated methods of conditional generation are left to future work.

The rest of the chapter is organized as follows: we survey the relevant literature (Related Work),

introduce the pole-balancing task and describe how we learn agent embeddings for it (Learning

Agent Embeddings for Cart-Pole), present the above-mentioned findings (Experimental Results

and Discussion), discuss the shortcomings of our approach (Limitations of Supervised Genera-

tion), speculate on potential applications (Potential Applications for AI), and finally summarize

the chapter at the end (Conclusion).

3.2 Related Work

There are four areas of research that are related to our work: interpretability, generative mod-

eling, meta-learning, and Bayesian neural networks.

3.2.1 Interpretability

There has been a lot of recent interest in making reinforcement learning agents and policies

interpretable. This is especially important in high-stake domains like health care and education.

[128] proposed to learn policies in a human-readable programming language, while [129] proposed

to learn certificates that provides guarantees on policy outcomes. [130] demonstrated utility in

learning embeddings for action traces in path planning. [131]’s work is very similar to ours -

they proposed a tool to compare phenotypic differences between solutions found by evolutionary

algorithms as a way to explore the geometry of the problem space.

39

One line of work that has proven useful in increasing our understanding of deep neural network

models is that of convergent learning [127], which measures correlations between the weights of

different neural networks with the same architecture to determine the similarity of representa-

tions learned by these different networks. Convergent learning investigations have hitherto, to our

knowledge, only been done on image classifiers, but we extend them to reinforcement learning

agents in this chapter.

3.2.2 Generative Modeling

Generative modeling is the technique of learning the underlying data distribution of a training

set, with the objective of generating new data points similar to those from the training set. Deep

neural networks have been used to build generative models for images [14], audio [132], video

[133], natural language sentences [134], DNA sequences [135], and even protein structures [17].

Complex semantic attributes can often be reduced to simple linear vectors and linear arithmetic in

the latent spaces of these generative models.

The ultimate (meta) challenge for neural network based generative models is not to generate

images or audio, but other neural networks. We use existing networks as meta-training points and

use them to train a neural network generator that can produce new pole-balancing networks that do

not then need to be further trained with training data from the Cart-Pole simulator. A key advantage

of using the same learning framework for both the meta learner and the learner is that this approach

could potentially be applied recursively (cue the Singularity).

3.2.3 Meta-Learning

The salient aspect of meta-learning that our work is connected to is the use of neural networks

to generate other neural networks. This has been done before in the context of hyperparameter

optimization, where one neural network is used to tune the hyperparameters of another neural

network [31, 51, 52, 49]. [55] proposed the concept of a HyperNet, a neural network that generates

the weights of another neural network with a differentiable function. This allows changes in the

40

weights of the generated network to be backpropagated to the HyperNet itself. [136] used a neural

network to generate its own weights as a way to implement artificial self-replication.

3.2.4 Bayesian Neural Networks

Bayesian neural networks [137] maintain a probabilistic model over the weights of a neural

network. In this framework, traditional optimization is viewed as finding the maximum likelihood

estimate of the probabilistic model. Posterior inference in this case is typically intractable, but

variational approximations can be used [138, 58, 139]. Our work involves learning a generative

model over the weights of a neural network using existing examples of networks, which is philo-

sophically akin to learning an ‘empirical Bayesian’ prior over the weights in a Bayesian neural

network.

3.3 Learning Agent Embeddings for Cart-Pole

3.3.1 Supervised Generation

We propose to learn agent embeddings for neural networks using a two-step process we call

Supervised Generation. First, we train a collection of neural networks of a fixed architecture to

solve a particular task. Next, the weights are saved and used as training input to a generative

model. This is a supervised method because we are learning the mapping from a latent distribution

to the space of neural network weights by feeding input-output pairs to the model. (There are some

obvious downsides to Supervised Generation as a method of learning agent embeddings. See the

Limitations of Supervised Generation section for a detailed discussion.)

In this case, we trained a variational autoencoder (CartPoleGen) on the parameter space of a

small network (CartPoleNet) used to play Cart-Pole.

3.3.2 Cart-Pole

Cart-Pole is a pole balancing task introduced by [140] with a modern implementation in the

OpenAI Gym [141]. It is also known as the inverted pendulum task and is a classic control problem.

41

The agent chooses to move left or right at every time step with the objective of preventing the pole

from falling over for as long as possible. We chose this task because it is easy - around 200 times

easier than MNIST on one measure [142] - and hence can be solved with small neural networks.

3.3.3 CartPoleNet

We devised a simple policy gradient neural network we call CartPoleNet with exactly one hid-

den layer of dimension 30 (see Figure 3.2) using the exponential linear unit [143] as the activation

function. We collected 74000 such networks by training them in the Cart-Pole simulator with vary-

ing amounts of time, hyperparameters and random seeds for over a week on a cloud computing

platform. The 212-dimensional weight vectors belonging to these 74000 networks were then used

as the training data for the generative model.

Figure 3.2: Architecture of CartPoleNet

A policy gradient neural network approximates the optimal action-value function

&∗(B, 0) = max
c
E

[∞∑
8=0

W8AC+8 | BC = B, 0C = 0, c
]

(3.1)

which is the maximum expected sum of rewards A8 discounted by W and achieved by a policy

%(0 | B) that makes an action 0 after observing state B. Cart-Pole assigns a reward of 1 for every

step taken, and each episode terminates whenever the pole angle exceeds 12◦, the position exceeds

the edge of the display, or once the pole has been successfully balanced for more than 200 time

steps.

42

At each epoch, we sample state-action pairs with an epsilon-decreasing policy and store them

with their rewards in an experience replay buffer to train the neural network. Note that the neural

network only takes state B as input, and its Q-value at action 0 is represented by the corresponding

activation on the last layer. Parametrizing the Q-function with a state-action pair as input is possible

but more computationally expensive because it requires | � | number of forward passes where �

is the action space [144].

3.3.4 CartPoleGen

CartPoleGen is a variational autoencoder with a diagonal Gaussian latent space of dimension

32. It contains skip connections (with concatenation not addition) and uses the exponential linear

unit as the activation function as in CartPoleNet (see Figure 3.3).

Figure 3.3: Architecture of CartPoleGen

A variational autoencoder [138] is a latent variable model with latent z and data x. We as-

sume the prior over the latent space to be the spherical Gaussian ?(z) = N(z; 0, I) and the con-

ditional likelihood ?\ (x | z) to be Gaussian, which we compute with a neural network decoder

parametrized by \. The true posterior ?(z | x) is intractable in this case, but we assume that it can

be approximated by a Gaussian with a diagonal covariance structure that we can compute with a

neural network encoder @q (z | x) parametrized by q.

43

Sampling from the posterior involves reparametrizing z ∼ N(-,2) to z = - + 2 � n where

n ∼ N(0, I) to allow the gradients to backpropagate through to - and 2.

We can train the variational autoencoder by maximizing the variational lower bound on the

marginal log likelihood of data point x:

L() , 5; x) = − D ! (@q (z | x) | | ?(z)) + E@q (z|x) [log ?\ (x | z)] (3.2)

The Monte Carlo estimator (with latent dimension : = 32 and noise mini-batch of size " = 1)

for equation (2), also known as the SGVB estimator, becomes

L() , 5; x) =1
2

∑
:

(1 + logf2
: − `

2
: − f

2
:) +

1
"

"∑
<=1

log ?\ (x | z(<)) (3.3)

Notice that maximizing the above lower bound involves maximizing the model’s log-likelihood,

which is equivalent to minimizing its negative log-likelihood. Minimizing the negative log-likelihood

of a Gaussian model is equivalent to minimizing the mean squared error, which is simply the re-

construction cost in an autoencoder.

3.3.5 Sampling from CartPoleGen

We divided the 74000 networks into four groups depending on the network’s survival time,

which we measure as the average number of steps before the episode terminates across 100 random

testing episodes. The survival time is quite a robust measure of CartPoleNet’s performance; it

varies ±5 at most due to the stochasticity of the Cart-Pole simulator.

We trained CartPoleGen in two settings. The first setting involves training on all 74000 net-

works, and then measuring the survival time of 200 new samples drawn from the posterior distri-

bution of the variational autoencoder. The second setting involves training a separate CartPoleGen

conditioned on each group with a conditional VAE setup [145]. The survival time in the second set-

ting is also measured with 200 new samples drawn from the posterior of the conditional generative

model.

44

The training was conducted using ADAM [115] for 20 epochs with a batch size of 10. The

results are summarized in Table 3.1. For comparison, an agent that randomly selects actions lasts

on average 22 steps, and an agent that makes the same action at every time step lasts only 9 steps.

The Cart-Pole simulation ends once an agent has survived 200 steps, so it is not possible to survive

longer than that.

Figure 3.4 shows that the CartPoleGen does not accurately capture the exact distribution of the

training data, but that it does offer an approximation to it. Training on better networks tends to lead

to better generated networks, with the exception of the 151− 200 survival time group. We surmise

that this is a consequence of the unimodal variational approximation.

Curiously, CartPoleGen seems to display zero-avoiding rather than zero-forcing behavior, which

show that the behavioral properties of neural network agents do not directly match their weight

space properties. It is interesting that in some cases, we are able to sample new networks that dra-

matically outperform the original networks that were in the training set. In the conditional groups,

the generated samples typically display much higher variance than is found in the training set, but

this does not hold true in the combined setting.

We hypothesize that the approximation gap is partially due to the limitations of the variational

autoencoder and can be narrowed with a more expressive generative model. We experimented

with various other neural architectures for the encoder and decoder, but did not manage to find

significant improvements. In fact, the architecture of CartPoleGen presented here approximates a

similar distribution when the encoder and decoder are trained with linear layers.

We also experimented with using GANs [77, 14] as the generative model for CartPoleGen, but

did not manage to successfully train them. In our experiments, the discriminator was not able to

provide a good teaching signal to the generator because it managed to rapidly distinguish between

the fake and real samples.

45

Table 3.1: Sampling new instances of CartPoleNet
Group Trainset Size (Mean, Std) of Survival

Time in Trainset
(Mean, Std) of Survival Time
in Generated Samples

1 − 50 steps 25608 21.8, 11.5 11.0, 9.7
51 − 100 steps 9400 69.7, 14.2 77.3, 46.5
101 − 150 steps 10103 132.6, 13.1 127.0, 55.3
151 − 200 steps 28889 184.9, 16.3 116.4, 58.6
Combined 74000 106.7, 73.3 136.7, 42.8

Figure 3.4: The figures are plotted as histograms, with KDE curves fitted on them. The x-axis
denotes the survival time, and the y-axis denotes the percentage of networks with that survival
time. The figures in blue represent the networks from the trainset, while the figures in orange
represent the sampled networks.

3.4 Experimental Results and Discussion

In this section, we perform three experiments using the agent embeddings learned by CartPole-

Gen in the previous section. These experiments involve (1) deciding if different CartPoleNets of

similar ability learn similar representations, (2) exploring the latent space learned by CartPoleGen,

and (3) repairing missing weights in a CartPoleNet.

3.4.1 Convergent Learning

[127] posed the question of convergent learning: do different neural networks learn the same

representations? In the case of convolutional neural networks used as image classifiers, they found

46

that shallow representations that resemble Gabor-like edge detectors are reliably learned, while

more semantic representations sometimes differ.

Success is usually not an accident. Prima facie, for a given complex task, it seems like there

can be a million ways to fail it, but only a handful of ways to successfully solve it. We hypothesize

this to be the case for Cart-Pole, but found surprisingly that the reverse was true.

[127] measured activations on a reference set of images from the ImageNet Large Scale Visual

Recognition Challenge 2012 dataset [8], and calculated the correlation of such activations between

pairs of convolutional neural networks. For CartPoleNets, the inputs are environment states in Cart-

Pole, so we had to first collect a reference set of 10000 diverse states in the Cart-Pole simulator

before computing CartPoleNet activations on them.

We follow the same methodology as [127] with the slight modification that we use the abso-

lute value of the activations. This is because we use ELUs in CartPoleNet which have important

negative activations that ReLU-based networks do not.

Mean : `8 = E[|-8 |] (3.4)

Std : f8 =
√
E[(|-8 | − `8)2] (3.5)

Corr : d8, 9 = E[(|-8 | − `8) (|- 9 | − ` 9)]/f8f9 (3.6)

The correlation between activations of a pair of networks can then be used to pair units from

the first network with units from the second. In a bipartite matching, we assign each pair by

matching units with the highest correlation, taking them out of consideration, and repeating the

process until all the units have been paired. Hence, each unit belongs to exactly one pair. This can

be done efficiently with the Hopcroft-Kraft algorithm [146]. In a semi-matching, we sequentially

assign each unit 8 from the first network using the unit 9 from the second network with the highest

correlation d8, 9 . It is thus possible that some units will belong to multiple pairs, while others will

47

not get paired at all.

Two networks are in some sense equivalent if we can arrive at one network by permuting the

ordering of the units of the other. The convergence distance (CD) between two networks can hence

be quantitatively measured as the distance between the bipartite matching and the semi-matching

(see Equation 3.7). There is exactly one bipartite matching of maximum cardinality, but multiple

possible semi-matchings depending on the order of assignment. We compute the convergence dis-

tance using the canonical semi-matching, defined as the semi-matching performed in descending

order from the most highly correlated to the least highly correlated pair in the bipartite matching.

CD(Net1,Net2) =
∑
8

d8,Bipartite(8) − d8,Semi(8) (3.7)

We sampled ten networks with survival time ∼191 (from the conditional CartPoleGen trained

on the 151-200 survival time group) and ten networks with survival time ∼29 (from the condi-

tional CartPoleGen trained on the 0-50 survival time group) to represent good and bad networks

respectively. Randomly selecting actions results in a survival time of 22, so 29 represents a bad

network that is nonetheless acting better than random. The average all-pairs convergence distance

in the good group and in the bad group are then computed, with the results summarized in Table

3.2. We visualize the convergence distances in the hidden and output layer between selected pairs

of CartPoleNets in Figures 3.5 and 3.6 respectively.

Table 3.2: Convergence of Good vs. Bad Networks (Higher CDs correspond to divergence, while
lower CDs correspond to convergence)

Group Survival Time Mean, Std CD (Hidden) Mean, Std CD (Output)

Good 191 2.75, 1.96 0.32, 0.49
Bad 29 3.13, 1.7 0.09, 0.11

The data suggests that for the task of Cart-Pole that there are more ways to be successful than

to be bad. In other words, given a random state in the environment, the good networks can diverge

in their decision to move left or right to balance the pole, but the bad networks uniformly make

48

Figure 3.5: The figure shows correlations between hidden activations of a pair of good Cart-
PoleNets, a pair of bad CartPoleNets, and a pair with one good and one bad CartPoleNet. For
the networks used in this figure, the convergence distances between the pairs are 1.51, 1.75 and
3.91 respectively.

the wrong decision. Surprisingly also, despite the good networks displaying divergence in their

actions, they pick up on more convergent (good) representations.

It is quite interesting that there are more ways to balance a pole successfully than poorly, but the

skills needed for the different paths to success are similar. We hypothesize that this is because the

order of actions might be less important than the overall composition of the two actions. Consider

a sequence of four actions. {Left, Right, Left, Right} would be highly negatively correlated with

{Right, Left, Right, Left} but on average, they might produce the same outcome of keeping the pole

balanced. On the other hand, {Left, Left, Left, Left} is highly correlated with {Left, Left, Left, Left}

and they both cause the pole to quickly lose its balance.

3.4.2 Exploring the Latent Space

The latent space in CartPoleGen gives us semantic information about the kinds of networks

that can be generated. We selected pairs of agent embeddings and sampled 20 new embeddings

from U = 0.0 to U = 1.5 where U represents the coefficient of linear interpolation between the pair

of embeddings. 0 < U < 1 represents interpolation, while U > 1 represents extrapolation. The

49

Figure 3.6: The figure shows correlations between output activations of a pair of good Cart-
PoleNets, a pair of bad CartPoleNets, and a pair with one good and one bad CartPoleNet. For
the networks used in this figure, the convergence distances between the pairs are 0.32, 0.07 and
0.28 respectively.

results are summarized in Figure 3.7.

The top left graph represents a pair of agent embeddings with a hidden CD of 1.82, the top

right 12.5, the bottom left 2.13, and the bottom right 2.77. We observe that linearly interpolating

within the latent space of CartPoleGen is not the same as simply interpolating within the weight

space of CartPoleNet, given that CartPoleGen is non-linear in nature. In many cases, moving from

a worse agent embedding to a better one tracks a similar improvement in survival time, as is the

case in the top left and bottom right graphs. Furthermore, extrapolation results in a performance

boost, up to a point.

However, we also observed many cases where interpolation resulted in agent embeddings

whose network performed far worse or far better than the two embeddings used as endpoints for

the interpolation. Interestingly, when the interpolated embeddings performed far better, it is often

the case that the hidden CDs of the networks used for the two endpoint embeddings is fairly large.

In the case of the top right graph, the hidden CD is in fact a few standard deviations above the

mean.

50

Figure 3.7: The x axis represents the coefficient of interpolation U, while the y axis represents
the survival time of the sampled networks. The orange dots represent networks sampled from
interpolating within the latent space, while the green dots represent networks interpolated within
the weight space with the same coefficient of interpolation. The blue line is a straight line drawn
from the survival time of the network sampled from the first agent embedding to the survival time
of the network sampled from the second agent embedding.

3.4.3 Repairing Missing Weights

The generative model can be used to repair CartPoleNets with missing weights. We propose

a simple rejection sampling based method (see Algorithm 3) to continuously sample new Cart-

PoleNets from the model until suitable candidates are found to fill out the missing weights. We

experiment with two possible criteria that can be used to pick the candidate.

, = Existing ∪Missing (3.8)

� = Candidate (3.9)

The Missing Criterion (see Equation 3.10) picks out the candidate who is most similar to the

damaged CartPoleNet when we are only comparing the existing weights.

�∗ = arg min
�

∑
8∈Existing

(,8 − �8)2 (3.10)

51

The Whole Criterion (see Equation 3.11) picks out the candidate who is most similar to the

damaged CartPoleNet. This biases the selection towards finding candidates with tiny weights in

the missing space.

�∗ = arg min
�

∑
8∈,
(,8 − �8)2 (3.11)

Algorithm 3: Rejection sampling based method to repair missing weights in a Cart-
PoleNet W. Let () () represent the survival time of a network.
W = 200
: = 10
Y = 5
Sample W networks from CartPoleGen
Pick : best candidates �∗ using a Criterion
for 8 ∈ [:] do

if | () (�8) − () (,) | < Y then
return Success, �8

end
end
return Failure, ∅

We can probe the limits of our generative model for the task of weight repair by determining

how much degradation can be reversed with a fixed computational budget (i.e. W and : are fixed).

To investigate this, we fix a given CartPoleNet, degrade it at a fixed level (i.e. zero out a fixed

fraction of the weights at random), and repair it using the rejection sampling based algorithm

proposed. The results are summarized in Figure 3.8.

We observe that the two criteria seem to perform similarly, with Whole Criterion performing

slightly better, and we managed to successfully recover the network at some levels of degradation.

While we do not recover the network completely (below the acceptable threshold of 5) in many

cases, it is hopeful to note that there is partial recovery (the difference in survival times is at most

15). It is also interesting that it is possible to recover the network at complete degradation; this

suggests perhaps that CartPoleGen has memorized this network.

The scheme described here can also be straightforwardly applied to the task of repairing (or

verifying) corrupted weights instead of missing weights. We note that rejection sampling is an in-

52

Figure 3.8: The figure shows the performance of the two criteria (in terms of the difference in
survival time between the original network and the recovered network) used to repair missing
weights at ten different levels of degradation. The threshold Y represents what we consider a
successful level of recovery, so all the points below the threshold represent successful reversal of
degradation.

efficient method of doing weight repair, and more sophisticated methods of conditional generation

should be used if efficiency is of concern.

3.5 Limitations of Supervised Generation

We note three main limitations of the Supervised Generation method in learning agent embed-

dings.

3.5.1 High Sample Complexity

One of the primary drawbacks of the Supervised Generation method is the two-step process

needed to first collect the data then train a generative model on it. This requires training a very

large number of networks to provide the generative model with data. Figure 3.9 shows progres-

sively worse approximations when we decrease the number of sampled networks by an order of

magnitude.

In principle, an agent embedding does not have to be learned in this manner. For example,

it might be possible to do Online Generation where a generative model learns to generate new

53

networks on-the-fly with an online algorithm. Online Generation will probably be more sample

efficient.

Figure 3.9: If we try to train the distribution in the 51-100 survival time group referred to in Figure
3.4 with fewer number of samples, we get worse approximations.

3.5.2 Subpar Model Performance

CartPoleGen does not approximate the training distribution very well (see Figure 3.4). This

might potentially be fixed with a better generative model that also has access to online training

data. For example, Bayesian HyperNetworks [58] might be a promising candidate.

3.5.3 Scaling Issues

We tried using a variational autoencoder to learn a 21840-dimensional weight vector for a small

neural network that does MNIST image classification. Reinforcement learning agents that process

images with CNNs would most likely contain weights at this order of magnitude at minimum.

We trained it on a dataset of 10000 networks each with >95% accuracy, but none of the sampled

networks managed to perform with >30% accuracy on a test set.

It might be difficult to scale the Supervised Generation method to large networks, even with

significant advances made in generative modeling techniques. This is because even state of the

art supervised generative models typically deal with data of much lower dimensions (<1000). A

54

notable exception is WaveNet [132], but it deals with audio data which is relatively smooth and

can tolerate high amounts of error, while the weights of a neural network are very discontinuous

and are not robust to small amounts of additive noise.

3.6 Potential Applications for AI

The ultimate challenge for neural network based generative systems is not generating images,

sounds, or videos. The ultimate challenge is the generation of other neural networks. Learning

agent embeddings is therefore a very difficult goal to accomplish, but we outline several potential

applications for AI in general.

• AI systems powered by neural networks are often criticized for being uninterpretable. Agent

embeddings provide us with a tool to gain insight into its internal workings and the space

of possible solutions, which we have demonstrated with the task of pole balancing in this

chapter.

• The generative model can be conditioned to prevent it from generating networks that have

undesirable properties like biases or security vulnerabilities. This is helpful for improving

the fairness and security of AI systems. We showed how CartPoleGen can be used to repair

weights in a network for example, which increases the data integrity of the system.

• It is helpful for an AI system to be able to generate worker AIs in a modular fashion. Each

worker AI can be represented with its own agent embedding, and the generative model can

be a factory that delivers a custom solution conditioned on the task given.

• Reinforcement learning agents perform better when they have access to a model of their

environment. We think they will also perform better in multi-agent systems when they have

access to compressed embeddings of other agents.

55

3.7 Conclusion

In this chapter, we presented the concept of agent embeddings, a way to reduce a reinforcement

learning agent into a small, meaningful vector representation. As a proof of concept, we trained

an autoencoder neural network CartPoleGen on a large number of policy gradient neural networks

collected to solve the pole-balancing task Cart-Pole. We showcased three interesting experimental

findings with CartPoleGen and described the challenges of the Supervised Generation method.

56

Chapter 4: Hypernetwork Initialization

4.1 Introduction

Meta-learning describes a broad family of techniques in machine learning that deals with the

problem of learning to learn. An emerging branch of meta-learning involves the use of hypernetworks,

which are meta neural networks that generate the weights of a main neural network to solve a given

task in an end-to-end differentiable manner. Hypernetworks were originally introduced by [55] as

a way to induce weight-sharing and achieve model compression by training the same meta network

to learn the weights belonging to different layers in the main network. Since then, hypernetworks

have found numerous applications including but not limited to: weight pruning [56], neural archi-

tecture search [41, 57], Bayesian neural networks [58, 59, 60, 61, 62], multi-task learning [63, 64,

65, 66, 67], continual learning [68], generative models [69, 70], ensemble learning [71], hyperpa-

rameter optimization [72], and adversarial defense [73].

Despite the intensified study of applications of hypernetworks, the problem of optimizing them

to this day remains significantly understudied. In fact, even the problem of initializing hypernet-

works has not been studied. Given the lack of principled approaches, prior work in the area is

mostly limited to ad-hoc approaches based on trial and error (c.f. Section 4.3). For example, it

is common to initialize the weights of a hypernetwork by sampling a “small” random number.

Nonetheless, these ad-hoc methods do lead to successful hypernetwork training primarily due to

the use of the Adam optimizer [115], which has the desirable property of being invariant to the

scale of the gradients. However, even Adam will not work if the loss diverges (i.e. overflow) at

initialization, which will happen in sufficiently big models. The normalization of badly scaled

gradients also results in noisy training dynamics where the loss function suffers from bigger fluc-

tuations during training compared to vanilla stochastic gradient descent (SGD). [147, 148] showed

57

that while adaptive optimizers like Adam may exhibit lower training error, they fail to generalize

as well to the test set as non-adaptive gradient methods. Moreover, Adam incurs a computational

overhead and requires 3X the amount of memory for the gradients compared to vanilla SGD.

Small random number sampling is reminiscent of early neural network research [149] before

the advent of classical weight initialization methods like Xavier init [81] and Kaiming init [82].

Since then, a big lesson learned by the neural network optimization community is that architecture

specific initialization schemes are important to the robust training of deep networks, as shown

recently in the case of residual networks [150]. In fact, weight initialization for hypernetworks was

recognized as an outstanding open problem by prior work [62] that had questioned the suitability

of classical initialization methods for hypernetworks.

Our results We show that when classical methods are used to initialize the weights of hypernet-

works, they fail to produce mainnet weights in the correct scale, leading to exploding activations

and losses. This is because classical network weights transform one layer’s activations into an-

other, while hypernet weights have the added function of transforming the hypernet’s activations

into the mainnet’s weights. Our solution is to develop principled techniques for weight initializa-

tion in hypernetworks based on variance analysis. The hypernet case poses unique challenges. For

example, in contrast to variance analysis for classical networks, the case for hypernetworks can be

asymmetrical between the forward and backward pass. The asymmetry arises when the gradient

flow from the mainnet into the hypernet is affected by the biases, whereas in general, this does

not occur for gradient flow in the mainnet. This underscores again why architecture specific ini-

tialization schemes are essential. We show both theoretically and experimentally that our methods

produce hypernet weights in the correct scale. Proper initialization mitigates exploding activations

and gradients or the need to depend on Adam. Our experiments reveal that it leads to more stable

mainnet weights, lower training loss, and faster convergence.

Section 4.2 briefly covers the relevant technical preliminaries, and Section 4.3 reviews prob-

lems with the ad-hoc methods currently deployed by hypernetwork practitioners. We derive novel

weight initialization formulae for hypernetworks in Section 4.4, empirically evaluate our proposed

58

methods in Section 4.5, and finally conclude in Section 4.6.

4.2 Preliminaries

Definition. A hypernetwork is a meta neural network � with its own parameters q that generates

the weights of a main network \ from some embedding 4 in a differentiable manner: \ = �q (4).

Unlike a classical network, in a hypernetwork, the weights of the main network are not model

parameters. Thus the gradients Δ\ have to be further backpropagated to the weights of the hyper-

network Δq, which is then trained via gradient descent qC+1 = qC − _ΔqC .

This fundamental difference suggests that conventional knowledge about neural networks may

not apply directly to hypernetworks and novel ways of thinking about weight initialization, opti-

mization dynamics and architecture design for hypernetworks are sorely needed.

4.2.1 Ricci Calculus

We propose the use of Ricci calculus, as opposed to the more commonly used matrix calculus,

as a suitable mathematical language for thinking about hypernetworks. Ricci calculus is useful

because it allows us to reason about the derivatives of higher-order tensors with notational ease.

For readers not familiar with the index-based notation of Ricci calculus, please refer to [151] for a

good introduction to the topic written from a machine learning perspective.

For a general nth-order tensor) 81,...,8: ,...,8= , we use d8: to refer to the dimension of the index set

that 8: is drawn from. We include explicit summations where the relevant expressions might be

ambiguous, and use Einstein summation convention otherwise. We use square brackets to denote

different layers for added clarity, so for example, [C] denotes the C-th weight layer.

4.2.2 Xavier Initialization

[81] derived weight initialization formulae for a feedforward neural network by conducting a

variance analysis over activations and gradients. For a linear layer H8 = , 8
9
G 9+18, suppose we make

59

the following Xavier Assumptions at initialization: (1) The , 8
9
, G 9 , and 18 are all independent of

each other. (2) ∀8, 9 : E[, 8
9
] = 0. (3) ∀ 9 : E[G 9] = 0. (4) ∀8 : 18 = 0.

Then, E[H8] = 0 and Var(H8) = d 9Var(, 8
9
)Var(G 9). To keep the variance of the output and

input activations the same, i.e. Var(H8) = Var(G 9), we have to sample, 8
9

from a distribution whose

variance is equal to the reciprocal of the fan-in: Var(, 8
9
) = 1

d 9
.

If analogous assumptions hold for the backward pass, then to keep the variance of the output

and input gradients the same, we have to sample, 8
9

from a distribution whose variance is equal to

the reciprocal of the fan-out: Var(, 8
9
) = 1

d8
.

Thus, the forward pass and backward pass result in symmetrical formulae. [81] proposed an

initialization based on their harmonic mean: Var(, 8
9
) = 2

d 9+d8 .

In general, a feedforward network is non-linear, so these assumptions are strictly invalid. But

odd activation functions with unit derivative at 0 results in a roughly linear regime at initialization.

4.2.3 Kaiming Initialization

[82] extended [81]’s analysis by looking at the case of ReLU activation functions, i.e. H8 =

, 8
9

ReLU(G 9) + 18. We can write I 9 = ReLU(G 9) to get

Var(H8) =
∑
9

E[(I 9)2]Var(, 8
9) =

∑
9

1
2
E[(G 9)2]Var(, 8

9) =
1
2

d 9Var(, 8
9)Var(G 9).

This results in an extra factor of 2 in the variance formula. , 8
9

have to be symmetric around

0 to enforce Xavier Assumption 3 as the activations and gradients propagate through the layers.

[82] argued that both the forward or backward version of the formula can be adopted, since the

activations or gradients will only be scaled by a depth-independent factor. For convolutional layers,

we have to further divide the variance by the size of the receptive field.

‘Xavier init’ and ‘Kaiming init’ are terms that are sometimes used interchangeably. Where

there might be confusion, we will refer to the forward version as fan-in init, the backward version

as fan-out init, and the harmonic mean version as harmonic init.

60

4.3 Review of Current Methods

In the seminal [55] paper, the authors identified two distinct classes of hypernetworks: dynamic

(for recurrent networks) and static (for convolutional networks). They proposed Orthogonal init

[152] for the dynamic class, but omitted discussion of initialization for the static class. The static

class has since proven to be the dominant variant, covering all kinds of non-recurrent networks

(not just convolutional), and thus will be the central object of our investigation.

Through an extensive literature and code review, we found that hypernet practitioners mostly

depend on the Adam optimizer, which is invariant to and normalizes the scale of gradients, for

training and resort to one of four weight initialization methods:

M1 Xavier or Kaiming init (as found in [60, 153, 66, 68]).

M2 Small random values (as found in [58, 72]).

M3 Kaiming init, but with the output layer scaled by 1
10 (as found in [59]).

M4 Kaiming init, but with the hypernet embedding set to be a suitably scaled constant (as found

in [67]).

M1 uses classical neural network initialization methods to initialize hypernetworks. This fails

to produce weights for the main network in the correct scale. Consider the following illustra-

tive example of a one-layer linear hypernet generating a linear mainnet with) + 1 layers, given

embeddings sampled from a standard normal distribution and weights sampled entry-wise from

a zero-mean distribution. We leave the biases out for now, and assume the input data G [1] is

standardized.

G [C + 1]8C+1 = , [C]8C+1
8C
G [C]8C , , [C]8C+1

8C
= � [C]8C+1

8C :C
4[C]:C , 1 ≤ C ≤).

Var(G [) + 1]8C+1) = Var(G [1]81)
)∏
C=1

d8CVar(, [C]8C+1
8C
) = Var(G [1]81)

)∏
C=1

d8Cd:CVar(� [C]8C+1
8C :C
).

(4.1)

In this case, if the variance of the weights in the hypernet Var(� [C]8C+1
8C :C
) is equal to the reciprocal of

61

the fan-in d:C , then the variance of the activations Var(G [)+1]8C+1) = ∏)
C=1 d8C explodes. If it is equal

to the reciprocal of the fan-out d8Cd8C+1 , then the activation variance Var(G [) + 1]8C+1) = ∏)
C=1

d:C
d8C+1

is

likely to vanish, since the size of the embedding vector is typically small relatively to the width of

the mainnet weight layer being generated.

Where the fan-in is of a different scale than the fan-out, the harmonic mean has a scale close

to that of the smaller number. Therefore, the fan-in, fan-out, and harmonic variants of Xavier and

Kaiming init will all result in activations and gradients that scale exponentially with the depth of

the mainnet.

M2 and M3 introduce additional hyperparameters into the model, and the ad-hoc manner in

which they work is reminiscent of pre deep learning neural network research, before the intro-

duction of classical initialization methods like Xavier and Kaiming init. This ad-hoc manner is

not only inelegant and consumes more compute, but will likely fail for deeper and more complex

hypernetworks.

M4 proposes to set the embeddings 4[C]:C to a suitable constant (d−1/2
8C

in this case), such that

both , [C]8C+1
8C

and � [C]8C+1
8C :C

can seem to be initialized with the same variance as Kaiming init. This

ensures that the variance of the activations in the mainnet are preserved through the layers, but the

restrictions on the embeddings might not be desirable in many applications.

Luckily, the fix appears simple — set Var(� [C]8C+1
8C :C
) = 1

d8C d:C
. This results in the variance of

the generated weights in the mainnet Var(, [C]8C+1
8C
) = 1

d8C
resembling conventional neural networks

initialized with fan-in init. This suggests a general hypernet weight initialization strategy: initialize

the weights of the hypernet such that the mainnet weights approximate classical neural network

initialization. We elaborate on and generalize this intuition in Section 4.4.

4.4 Hyperfan Initialization

Most hypernetwork architectures use a linear output layer so that gradients can pass from the

mainnet into the hypernet directly without any non-linearities. We make use of this fact in devel-

oping methods called hyperfan-in init and hyperfan-out init for hypernetwork weight initialization

62

based on the principle of variance analysis.

4.4.1 Hyperfan-in

Proposition. Suppose a hypernetwork comprises a linear output layer. Then, the variance between

the input and output activations of a linear layer in the mainnet H8 = , 8
9
G 9 + 18 can be preserved

using fan-in init in the hypernetwork with appropriately scaled output layers.

Case 1. The hypernet generates the weights but not the biases of the mainnet. The bias in

the mainnet is initialized to zero. We can write the weight generation in the form, 8
9
= �8

9 :
ℎ(4): +

V8
9

where ℎ computes all but the last layer of the hypernet and (�, V) form the output layer. We

make the following Hyperfan Assumptions at initialization: (1) Xavier assumptions hold for all

the layers in the hypernet. (2) The �8
9 :

, ℎ(4): , V8
9
, G 9 , and 18 are all independent of each other. (3)

∀8, 9 , : : E[�8
9 :
] = 0. (4) E[G 9] = 0. (5) ∀8 : 18 = 0.

Use fan-in init to initialize the weights for ℎ. Then, Var(ℎ(4):) = Var(4;). If we initialize �

with the formula Var(�8
9 :
) = 1

d 9d:Var(4;) and V with zeros, we arrive at Var(, 8
9
) = 1

d 9
, which is the

formula for fan-in init in the mainnet. The Hyperfan assumptions imply the Xavier assumptions

hold in the mainnet, thus preserving the input and output activations.

Var(H8) =
∑
9

Var(, 8
9)Var(G 9) =

∑
9

∑
:

Var(�89 :)Var(ℎ(4):)Var(G 9)

=
∑
9

∑
:

1
d 9d:Var(4;)

Var(4;)Var(G 9) = Var(G 9).
(4.2)

Case 2. The hypernet generates both the weights and biases of the mainnet. We can write

the weight and bias generation in the form , 8
9
= �8

9 :
ℎ(4[1]): + V8

9
and 18 = �8

;
6(4[2]); + W8

respectively, where ℎ and 6 compute all but the last layer of the hypernet, and (�, V) and (�, W)

form the output layers. We modify Hyperfan Assumption 2 so it includes �8
;
, 6(4[2]); , and W8,

and further assume Var(G 9) = 1, which holds at initialization with the common practice of data

standardization.

Use fan-in init to initialize the weights for ℎ and 6. Then, Var(ℎ(4[1]):) = Var(4[1]<) and

63

Var(6(4[2]);) = Var(4[2]=). If we initialize � with the formula Var(�8
9 :
) = 1

2d 9d:Var(4[1]<) ,� with

the formula Var(�8
;
) = 1

2d;Var(4[2]=) , and V, W with zeros, then the input and output activations in the

mainnet can be preserved.

Var(H8) =
∑
9

[
Var(, 8

9)Var(G 9)
]
+ Var(18)

=
∑
9

[∑
:

Var(�89 :)Var(ℎ(4[1]):)Var(G 9)
]
+

∑
;

Var(�8;)Var(6(4[2]);)

=
∑
9

[∑
:

1
2d 9d:Var(4[1]<)Var(4[1]<)Var(G 9)

]
+

∑
;

1
2d;Var(4[2]=)Var(4[2]=)

=
1
2

Var(G 9) + 1
2
= Var(G 9).

(4.3)

If we initialize �8
9

to zeros, then its contribution to the variance will increase during training,

causing exploding activations in the mainnet. Hence, we prefer to introduce a factor of 1/2 to

divide the variance between the weight and bias generation, where the variance of each component

is allowed to either decrease or increase during training. This becomes a problem if the variance

of the activations in the mainnet deviates too far away from 1, but we found that it works well in

practice.

4.4.2 Hyperfan-out

Case 1. The hypernet generates the weights but not the biases of the mainnet. A similar

derivation can be done for the backward pass using analogous assumptions on gradients flowing

in the mainnet:
m!

mG [C]8C =
m!

mG [C + 1]8C+1, [C]
8C+1
8C
,

through mainnet weights:
m!

m, [C]8C+1
8C

=
m!

mG [C + 1]8C+1 G [C]
8C ,

m!

mℎ[C] (4):C
=

m!

m, [C]8C+1
8C

� [C]8C+1
8C :C
,

and through mainnet biases:
m!

m1[C]8C+1 =
m!

mG [C + 1]8C+1 ,
m!

m6[C] (4);C
=

m!

m1[C]8C+1� [C]
8C+1
;C
.

(4.4)

64

If we initialize the output layer� with the analogous hyperfan-out formula Var(� [C]8C+1
8C :C
) = 1

d8C+1d:CVar(4:C)

and the rest of the hypernet with fan-in init, then we can preserve input and output gradients on

the mainnet: Var(m!
mG [C]8C) = Var(m!

mG [C+1]8C+1). However, note that the gradients will shrink when

flowing from the mainnet to the hypernet: Var(m!

mℎ[C] (4):C) =
d8C

d:CVar(4:C)Var(m!

m, [C]8C+1
8C

), and scaled by

a depth-independent factor due to the use of fan-in rather than fan-out init.

Case 2. The hypernet generates both the weights and biases of the mainnet. In the classical

case, the forward version (fan-in init) and the backward version (fan-out init) are symmetrical. This

remains true for hypernets if they only generated the weights of the mainnet. However, if they were

to also generate the biases, then the symmetry no longer holds, since the biases do not affect the

gradient flow in the mainnet but they do so for the hypernet (c.f. Equation 4.4). Nevertheless, we

can initialize � so that it helps hyperfan-out init preserve activation variance on the forward pass

as much as possible (keeping the assumption that Var(G 9) = 1 as before):

Var(H8) =
∑
9

[
Var(, 8

9G
9)
]
+ Var(18)

= d 9d:Var(4[1]<)Var(� [hyperfan-out]89 :)Var(G 9) + d;Var(4[2]=)Var(�8;)

= d 9d:Var(4[1]<)Var(� [hyperfan-in]89 :)Var(G 9)

Plugging in the formulae for Hyperfan-in and Hyperfan-out from above, we get

=⇒ Var(�8;) =
(1 − d 9

d8
)

d;Var(4[2]=) .

(4.5)

We summarize the variance formulae for hyperfan-in and hyperfan-out init in Table 4.1. It is not

uncommon to re-use the same hypernet to generate different parts of the mainnet, as was originally

done in [55]. We discuss this case in more detail in Appendix Section A.1.

4.5 Experiments

We evaluated our proposed methods on four sets of experiments involving different use cases of

hypernetworks: feedforward networks, continual learning, convolutional networks, and Bayesian

neural networks. In all cases, we optimize with vanilla SGD and sample from the uniform distri-

65

Table 4.1: Hyperfan-in and Hyperfan-out Variance Formulae for , 8
9
= �8

9 :
ℎ(4[1]): + V8

9
. If H8 =

ReLU(, 8
9
G 9 + 18), then 1ReLU = 1, else if H8 = , 8

9
G 9 + 18, then 1ReLU = 0. If 18 = �8

;
6(4[2]); + W8,

then 1HBias = 1, else if 18 = 0, then 1HBias = 0. We initialize ℎ and 6 with fan-in init, and V8
9
, W8 = 0.

For convolutional layers, we have to further divide Var(�8
9 :
) by the size of the receptive field.

Uniform init: - ∼ U(−
√

3Var(-),
√

3Var(-)). Normal init: - ∼ N(0,Var(-)).

Initialization Variance Formula Initialization Variance Formula

Hyperfan-in Var(�8
9 :
) = 21ReLU

21HBias d 9d:Var(4[1]<) Hyperfan-out Var(�8
9 :
) = 21ReLU

d8d:Var(4[1]<)

Hyperfan-in Var(�8
;
) = 21ReLU

2d;Var(4[2]=) Hyperfan-out Var(�8
;
) = max(

21ReLU (1−
d 9
d8
)

d;Var(4[2]=) , 0)

bution according to the variance formula given by the init method. More experimental details can

be found in Appendix Section A.2.

4.5.1 Feedforward Networks on MNIST

As an illustrative first experiment, we train a feedforward network with five hidden layers (500

hidden units), a hyperbolic tangent activation function, and a softmax output layer, on MNIST

across four different settings: (1) a classical network with Xavier init, (2) a hypernet with Xavier

init that generates the weights of the mainnet, (3) a hypernet with hyperfan-in init that generates

the weights of the mainnet, (4) and a hypernet with hyperfan-out init that generates the weights of

the mainnet.

The use of hyperfan init methods on a hypernetwork reproduces mainnet weights similar to

those that have been trained from Xavier init on a classical network, while the use of Xavier init

on a hypernetwork causes exploding activations right at the beginning of training (see Figure 4.1).

Observe in Figure 4.2 that when the hypernetwork is initialized in the proper scale, the magnitude

of generated weights stabilizes quickly. This in turn leads to a more stable training regime, as

seen in Figure 4.3. More visualizations of the activations and gradients of both the mainnet and

hypernet can be viewed in Appendix Section A.2.1. Qualitatively similar observations were made

when we replaced the activation function with ReLU and Xavier with Kaiming init, with Kaiming

66

init leading to even bigger activations at initialization.

Suppose now the hypernet generates both the weights and biases of the mainnet instead of just

the weights. We found that this architectural change leads the hyperfan init methods to take more

time (but still less than Xavier init), to generate stable mainnet weights (c.f. Figure A.19 in the

Appendix).

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Activation Value

0

5

10

15

20

Nu
m

be
r o

f A
ct

iv
at

io
ns

Xavier (NN)
layer one
layer two
layer three
layer four
layer five

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Activation Value

0

50

100

150

200

250

300

Nu
m

be
r o

f A
ct

iv
at

io
ns

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Activation Value

0

5

10

15

20

25

30

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

5

10

15

20

25

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure 4.1: Mainnet Activations before the Start of Training on MNIST.

0 25 50 75 100 125 150 175
1k Iterations

0.2

0.0

0.2

0.4

0.6

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

1e 4 Xavier (Hyper)
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

1.0

0.5

0.0

0.5

1.0

1.5

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

1e 4 Hyperfan-in
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

1e 4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure 4.2: Evolution of Hypernet Output Layer Activations during Training on MNIST. Xavier
init results in unstable mainnet weights throughout training, while hyperfan-in and hyperfan-out
init result in mainnet weights that stabilize quickly.

4.5.2 Continual Learning on Regression Tasks

Continual learning solves the problem of learning tasks in sequence without forgetting prior

tasks. [68] used a hypernetwork to learn embeddings for each task as a way to efficiently regularize

the training process to prevent catastrophic forgetting. We compare different initialization schemes

on their hypernetwork implementation, which generates the weights and biases of a ReLU mainnet

with two hidden layers to solve a sequence of three regression tasks.

67

0 5 10 15 20 25 30
Epochs

0.00

0.01

0.02

0.03

0.04

Training Loss
Xavier (NN)
Xavier (Hyper)
Hyperfan-in
Hyperfan-out

0 5 10 15 20 25 30
Epochs

0.06

0.08

0.10

0.12

0.14

0.16

Test Loss
Xavier (NN)
Xavier (Hyper)
Hyperfan-in
Hyperfan-out

0 5 10 15 20 25 30
Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5
Test Accuracy

Xavier (NN)
Xavier (Hyper)
Hyperfan-in
Hyperfan-out

Figure 4.3: Loss and Test Accuracy Plots on MNIST.

In Figure 4.4, we plot the training loss averaged over 15 different runs, with the shaded area

showing the standard error. We observe that the hyperfan methods produce smaller training losses

at initialization and during training, eventually converging to a smaller loss for each task.

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Lo

ss

Task 1
Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
Lo

ss

Task 2
Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

0 1000 2000 3000 4000 5000 6000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Lo

ss

Task 3
Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

Figure 4.4: Continual Learning Loss on a Sequence of Regression Tasks.

4.5.3 Convolutional Networks on CIFAR-10

[55] applied a hypernetwork on a convolutional network for image classification on CIFAR-10.

We note that our initialization methods do not handle residual connections, which were in their

chosen mainnet architecture and are important topics for future study. Instead, we implemented

their hypernetwork architecture on a mainnet with the All Convolutional Net architecture [154]

that is composed of convolutional layers and ReLU activation functions.

After searching through a dense grid of learning rates, we failed to enable the fan-in version of

Kaiming init to train even with very small learning rates. The fan-out version managed to begin

68

delayed training, starting from around epoch 270 (see Figure 4.5). By contrast, both hyperfan-in

and hyperfan-out init led to successful training immediately. This shows a good init can make it

possible to successfully train models that would have otherwise been unamenable to training on a

bad init.

0 100 200 300 400 500
Epochs

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

Training Loss

Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

0 100 200 300 400 500
Epochs

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Test Loss

Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

0 100 200 300 400 500
Epochs

10

20

30

40

50

60

70

80
Test Accuracy

Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

Figure 4.5: Loss and Test Accuracy Plots on CIFAR-10.

4.5.4 Bayesian Neural Networks on ImageNet

Bayesian neural networks improve model calibration and provide uncertainty estimation, which

guard against the pitfalls of overconfident networks. [59] developed a Bayesian neural network by

using a hypernetwork to simulate an expressive prior distribution. We trained a similar hypernet-

work by applying [59]’s methods on ImageNet, but differed in our choice of MobileNet [155] as a

mainnet architecture that does not have residual connections.

In the work of [59], it was noticed that even with the use of batch normalization in the mainnet,

classical initialization approaches still led to diverging losses (due to exploding activations, c.f.

Section 4.3). We observe similar results in our experiment (see Figure 4.6) — the fan-in version of

Kaiming init, which is the default initialization in popular deep learning libraries like PyTorch and

Chainer, resulted in substantially higher initial losses and led to slower training than the hyperfan

methods. We found that the observation still stands even when the last layer of the mainnet is not

generated by the hypernet. This shows that while batch normalization helps, it is not the solution

for a bad init that causes exploding activations. Our approach solves this problem in a principled

69

way, and is preferable to the trial-and-error based heuristics that [59] had to resort to in order to

train their model.

Surprisingly, the fan-out version of Kaiming init led to similar results as the hyperfan methods,

suggesting that batch normalization might be sufficient to correct the bad initializations that result

in vanishing activations. That being said, hypernet practitioners should not expect batch normaliza-

tion to be the panacea for problems caused by bad initialization, especially in memory-constrained

scenarios. In a Bayesian neural network application (especially in hypernet architectures with-

out relaxed weight-sharing), the blowup in the number of parameters limits the use of big batch

sizes, which is essential to the performance of batch normalization [156]. For example, in this

experiment, our hypernet model requires 32 times as many parameters as a classical MobileNet.

To the best of our knowledge, the interaction between batch normalization and initialization

is not well-understood, even in the classical case, and thus, our findings prompt an interesting

direction for future research.

0 20000 40000 60000 80000 100000 120000
Iterations

0

5

10

15

20

25

30

35

Training Loss
Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

0 5 10 15 20 25
Epochs

2

4

6

8

10

12

14

16

Top-5 Test Accuracy

Kaiming (fan-in)
Kaiming (fan-out)
Hyperfan-in
Hyperfan-out

Figure 4.6: Loss and Test Accuracy Plots on ImageNet.

In all our experiments, hyperfan-in and hyperfan-out both led to successful hypernetwork train-

ing with SGD. We did not find a good reason to prefer one over the other (similar to [82]’s obser-

vation in the classical case for fan-in and fan-out init).

4.6 Conclusion

For a long time, the promise of deep nets to learn rich representations of the world was left un-

fulfilled due to the inability to train these models. The discovery of greedy layer-wise pre-training

[157, 158] and later, Xavier and Kaiming init, as weight initialization strategies to enable such

70

training was a pivotal achievement that kickstarted the deep learning revolution. This underscores

the importance of model initialization as a fundamental step in learning complex representations.

In this work, we developed the first principled weight initialization methods for hypernetworks,

a rapidly growing branch of meta-learning. We hope our work will spur momentum towards the

development of principled techniques for building and training hypernetworks, and eventually lead

to significant progress in learning meta representations. Other non-hypernetwork methods of neu-

ral network generation [28, 159] can also be improved by considering whether their generated

weights result in exploding activations and how to avoid that if so.

71

Chapter 5: Hypernetwork Optimization

5.1 Introduction

A hypernetwork is a meta neural network parametrized by q that generates a main neural net-

work with weights \ to minimize a given task loss L. Unlike a conventional neural network, \ are

not model parameters, and the gradients that backpropagate to them have to be further backpropa-

gated to q for a gradient descent update q := q − U∇qL.

Hypernetworks were introduced by [55] for the purpose of model compression, and they have

since been employed in a wide range of other applications including Bayesian deep learning, multi-

task learning, continual learning, and more. The object of this chapter is to study hypernetworks

in an artificial life context.

Specifically, we define and study a special class of hypernetworks called hypergenerative

networks that act as replicators — they take a given neural network’s parameters \ as input and

outputs parameters equal to them \auto = \. We make three contributions: i) A catalog of different

update rules to the main network generated by gradient descent on the hypernetwork arising from

simple hypernetwork architectures, ii) A proof that a generalized form for some of these update

rules, when applied recursively and used to train the hypernetwork, result in the same update rule

for the main network, and iii) Experimental verification that these update rules can be used to

successfully train large neural networks with comparable levels of accuracy as gradient descent.

5.2 Catalog of hypergenerative Networks

We limit our study of hypergenerative networks to exact replicators 5 = �. A simple way to

ensure exact replication is to initialize q at every training step so that the hypergenerative property

\auto = 5q (\) = \ holds, where \ is considered a constant and gradient descent is used to update

72

q. This gives rise to different update rules on the main network depending on the hypernetwork’s

architecture.

Rule 0: Ordinary gradient descent falls into a special case where the hypernetwork consists of just

a bias term 1 ∈ R=. The hypergenerative property holds when 1 = 0.

q = {1},

\auto = \ + 1,

\′auto := \ + 1 − U∇1L

= \auto − U∇\autoL.

(5.1)

Rule 1: Add a multiplicative factor F ∈ R= to Rule 0. The hypergenerative property holds when

F = 1, 1 = 0.

q = {F, 1},

\auto = F � \ + 1,

\′auto := (F − U∇FL) � \ + 1 − U∇1L

= \auto − U(1 + \2
auto) � ∇\autoL.

(5.2)

Rule 2: Now consider a normalization of \. The hypergenerative property holds when F =

| |\ | |2, 1 = 0.

q = {F, 1},

\auto = F �
\

| |\ | |2
+ 1,

\′auto := (F − U∇FL) �
\

| |\ | |2
+ 1 − U∇1L

= \auto − U(1 +
\auto

| |\auto | |2
� \auto

| |\auto | |2
) � ∇\autoL.

(5.3)

Rule 3: Consider a weight matrix, ∈ R=x= instead in Rule 1. The hypergenerative property holds

73

when, = �, 1 = 0.

q = {,, 1},

\auto = ,\ + 1,

\′auto := (, − U∇,L)\ + 1 − U∇1L

= \auto − U(1 + ||\auto | |2)∇\autoL.

(5.4)

Rule 4: Consider a linear autoencoder with tied weights. The hypergenerative property holds for

orthogonal, (i.e.,), = �). Let = \ ∇\autoL) + ∇\autoL \) .1

q = {,},

\auto = ,
),\,

\′auto := (, − U∇,L)) (, − U∇,L)\

= \auto − U(2 − U) \auto.

(5.5)

Rule 5: Add bias terms to Rule 4. The hypergenerative property holds for orthogonal , , 11 = 0,

12 = 0.

q = {,, 11, 12},

\auto = ,
) (,\ + 11) + 12,

\′auto := (, − U∇,L))
[
(, − U∇,L)\ + 11 − U∇11L

]
+ 12 − U∇12L

= \auto − U(2 − U) (∇\autoL + \auto).

(5.6)

1An implementation detail is that we have to use vector products instead of storing explicitly, since it uses
quadratic memory.

74

5.3 Stability under Hypergeneration

Above, we derived update rules to the main network that were a result of gradient descent

updates to the hypernetwork. But these update rules can themselves be used to train the hyper-

network. We say that a hypernet is stable under hypergeneration if an update rule applied to the

hypernet results in an equivalent update rule to the mainnet.

Rule 0 is trivially stable. Below, we state a generalized form for Rules 1-3 that are stable,

where � is some constant.

Generalized Rule 1:

\auto := \auto − U(1 + �\2
auto) � ∇\autoL.

Generalized Rule 2:

\auto := \auto − U(1 + �
\auto

| |\auto | |2
� \auto

| |\auto | |2
) � ∇\autoL.

Generalized Rule 3:

\auto := \auto − U(1 + � | |\auto | |2)∇\autoL.

(5.7)

Generalized Rule 1 can be proved to be stable like so.

\′auto :=
(
F − U(1 + �F2)∇FL

)
� \ + 1 − U(1 + �12)∇1L

= \auto − U
(
1 + (1 + �)\2

auto
)
� ∇\autoL.

= \auto − U(1 + �′\2
auto) � ∇\autoL.

(5.8)

Similar derivations can be done for Generalized Rules 2 and 3. It is an open question if Rules 4

and 5 have a generalized form that is stable as well.

5.4 Experiments

We trained a ResNet18 [160] using the Adam optimizer [115] for 40 epochs on the CIFAR-10

dataset. The main finding is that all these alternative update rules except Rule 2 displayed similar

75

0 5 10 15 20 25 30 35 40
Epochs

55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y

Rule0
Rule1
Rule3
Rule4
Rule5

Figure 5.1: Test Accuracy of ResNet18 on CIFAR-10 for Hypergenerative Networks.

test accuracy to standard gradient descent (Rule 0), despite them not minimizing the task loss

directly. This suggests that the reparametrization resulting from the use of these rules can be an

efficient way to model artifical populations of neural agents created from hypernetworks, since the

overhead compute used by these rules is negligible compared to maintaining full hypernetwork

parameters. Rule 2 did not result in successful training because of numerical errors from division

by zero.

5.5 Conclusion

We did a preliminary study of a special class of replicator hypernetworks called hypergenera-

tive networks in this chapter. Future work involves extending our analysis to noisy replicators and

more complex hypernet architectures, as well as using them in applications that involve modeling

populations of neural network agents.

76

Chapter 6: Gradient-Based Meta-Learning

Figure 6.1: The arrows represent gradient steps taken within the inner loop of meta-learning,
with \C,: denoting the version of the model after : training steps on task C. There are no across-
task interactions in the inner loop, causing task-specific over-fitting. This is especially so at the
beginning of meta-training, before a good initialization \ has been meta-learned. The inner loop
learning process can be regularized with gradients shared from related tasks.

6.1 Introduction

Despite the recent triumphs of deep supervised learning in fields as disparate as computer vi-

sion [161], speech processing [162], and computational biology [163], much human expertise and

massive amounts of data are necessary to engineer the learning algorithms involved. Devising an

optimal learning algorithm for the problem at hand is usually not trivial since different domains

require different inductive biases [164]. The manual search for better learning algorithms signifi-

cantly increases the time needed to successfully train and deploy a machine learning model.

Meta-learning is a sub-field of machine learning that endeavors to rise to these challenges by

applying machine learning itself to the (meta) task of generating better machine learning algorithms

[43, 47, 165]. There are many approaches to meta-learning including but not limited to: using

reinforcement learning to search for optimal neural architectures [31], learning meta networks that

77

generate other networks [55], augmenting neural networks with an external memory [166, 167],

learning metric-based representations for different tasks [168, 169, 170], and learning parametric

weight update rules [42, 45, 78].

Gradient-based meta-learning is a special case of the parametric weight update rule approach

where the rule is differentiable and its parameters can be learned using a gradient-based optimizer.

The weight update rule is itself a learning algorithm and is commonly referred to as the inner loop,

by contrast with the optimizer which is the outer loop. Because the inner loop is differentiable, we

can backpropagate gradients from the outer loop through the inner loop to update the parameters

of the inner loop learning rule. In this chapter, we will refer to gradient-based meta learning as

just meta-learning and the term ‘meta-learn’ refers to updates made to the inner loop learner by the

outer loop learner.

In meta-learning, each inner loop learner learns by sampling from data points within a given

task and suffering a test loss. The outer loop then meta-learns by sampling from tasks in a given

meta-training distribution and combines the test losses of several inner loop learners to suffer a

meta-test loss. After having seen sufficiently many tasks, the goal of meta-learning is to produce a

general learning rule that can learn from a new unseen task. Intuitively, meta-learning can be seen

as a way to transfer learn [171] at scale, and if the inner loop learns to quickly learn, it can be very

effective at few-shot learning [75].

However, like conventional machine learning, meta-learning algorithms can be prone to the

risk of over-fitting. Unlike conventional learning, over-fitting in meta-learning can occur at both

the level of the outer and the inner loop. Much prior work has dealt with the outer loop over-fitting

to tasks in the meta-training distribution [172, 173, 174, 175], but little attention has been paid

towards the inner loop over-fitting to task-specific training data points.

During the initial phase of meta-training, the scarce number of data points in each task, espe-

cially for few-shot learning setups, inevitably causes the over-fitting of comparatively much bigger

neural network models. To counter this, meta-learning methods meta-learn the initialized weights

of the inner loop learner as a parameter [78]. By pooling information across different tasks in the

78

meta-training distribution using the outer loop, the initialization eventually picks up task invariant

information and gravitates towards a good basin of attraction that reduces the tendency for the inner

loop learner to over-fit [176]. This means that unlike conventional or outer loop over-fitting, inner

loop over-fitting does not always pose a problem to the generalization ability of the meta-learner.

Nevertheless, limiting the interaction between tasks to take place only through the outer loop

iteration significantly slows down the convergence of meta-learning. At the start of meta-training,

the over-fitting of the inner loop learners causes them to suffer high test losses. Their parameters

correspondingly fail to encode task specific information, reducing the signal available to the meta-

test loss and thus, the outer loop. This problem is sustained until the model progresses towards

more meaningful solutions in the inner loop, causing a significant number of wasteful initial model

updates in the outer loop. In meta-learning, this issue is further exacerbated by the inordinate

computational expense of a model update, which scales with the number of data points within

each task, the number of tasks, the number of operations used by each inner loop learner, and the

ultimate need to backpropagate through all of that.

Our Contribution We propose an inner loop regularization mechanism inspired by multi-task

learning [177, 178] called gradient sharing. Historically, multi-task learning was a predominant

approach to leveraging multiple related tasks to learn task-invariant information. Despite this com-

mon objective, the rapid development of meta-learning has occurred independently from the vast

multi-task learning literature. The surprising insight from our work is that the two fields com-

plement each other in a synergistic way. On one hand, sharing information across tasks in the

inner loop via multi-task learning significantly reduces over-fitting. On the other hand, the outer

loop can be recruited to meta-learn extra parameters so as to avoid the traditional pitfalls of multi-

task learning like imbalanced task combinations. Our proposed method works by sharing gradient

information obtained from both previously encountered and concurrent tasks, and scales their con-

tribution with meta-learned parameters. Through extensive experiments on two popular few-shot

image classification datasets, we show that gradient sharing accelerates the meta-training process

by up to 134%, and enables meta-learning that is robust to bigger inner loop learning rates while

79

achieving comparable or better meta-test performance. Accelerating meta-training is a key step

towards unleashing its full potential, empowering practitioners to use more complex inner loop

learners that would have otherwise been intractable.

The rest of the chapter is organized as follows: Section 6.2 briefly reviews gradient-based

meta-learning and related work. Section 6.3 explores the complementary relationship between the

well-established field of multi-task learning and the recent body of work in gradient-based meta-

learning. We introduce the gradient sharing algorithm in Section 6.4, experimentally evaluate and

discuss our results in Section 6.5, and finally conclude our findings in Section 6.6.

6.2 Review of Gradient-Based Meta-Learning

Gradient-based meta-learning consists of a meta-training and a meta-testing phase, both con-

taining batches of conventional supervised learning tasks. For such a task C drawn from task distri-

bution T , we denote its training loss by Ltrain
C and its test loss by Ltest

C . The goal of meta-learning

is to learn to learn tasks in Tmetatrain during the meta-training phase so that this learning ability

generalizes to unseen tasks in Tmetatest during the meta-testing phase.

Specifically, the optimization problem for gradient-based meta-learning can be written as

arg min
\,q

EC∼T
[
Ltest
C

(
InnerLoop(\,Ltrain

C ; q)
)]
, (6.1)

where InnerLoop denotes a learning rule parametrized by q that a model uses to update its own

parameters \ based on the training loss Ltrain
C . Each meta-training iteration consists of doing task-

specific inner loop training using the learning rule, evaluating the model with the task loss, back-

propagating the loss back through the inner loop, and finally, using the gradients obtained to apply

a model update in the outer loop. So long as InnerLoop is differentiable, the model and the learning

rule in this meta optimization problem can be trained end-to-end with gradient descent.

[74, 75] initially proposed using a recurrent neural network as the learning rule, but the domi-

nant approach today is to use gradient descent itself as the learning rule. This was first done by the

80

seminal Model-Agnostic Meta-Learning (MAML) algorithm [78], whose name partially comes

from the fact that there is no need to use any specific kind of external model for the inner loop

updates.

We summarize below the basic MAML algorithm and a non-exhaustive list of variations that

have been proposed.

6.2.1 MAML

For task C and gradient descent steps of a fixed size U, we can write the MAML inner loop

training as follows:

InnerLoop(\,Ltrain
C) = \C, ,

\C,0 := \,

\C,: := \C,:−1 − U∇\C ,:−1Ltrain
C (\C,:−1).

(6.2)

The inner loop updates do not result in an actual model update, but are only intermediate steps

used to compute it,

\′ := \ − V
)

)∑
C=1
∇\Ltest

C (\C,), (6.3)

where the final loss is a mean of the test loss of the model initialized at \ and separately trained

over) sampled tasks.

Notice that before this outer loop update is computed, we have to maintain) distinct versions of

the model in memory, where none of them interacts with each other in the inner loop. The special

case of = 0 corresponds to multi-task learning, where the inner loop is effectively collapsed and

task interactions occur directly.

81

6.2.2 Meta-SGD

While MAML only meta-learns a good starting initialization \, Meta-SGD [179] proposes to

also meta-learn the learning rule’s update direction and learning rate with a vector of learning rates

" to improve generalization.

InnerLoop(\,Ltrain
C ;") = \C, ,

\C,: := \C,:−1 − "∇\C ,:−1Ltrain
C (\C,:−1),

(\′,"′) := (\,") − V
)

)∑
C=1
∇(\,")Ltest

C (\C,).

(6.4)

While Meta-SGD preconditions the inner loop gradient with a vector of learning rates, other papers

in the literature suggest preconditioning with a block diagonal matrix [180] and task-conditioned

operators [181, 182].

6.2.3 MAML++

[183] observed that MAML suffers from noisy training dynamics and is very sensitive to the

choice of neural network architecture despite its namesake. The authors recommended a series of

fixes that they call MAML++. In addition to meta-learning the learning rate like Meta-SGD (but

for each model layer not parameter), two of the most consequential fixes in MAML++ include:

Multi-Step Loss Optimization The outer loop update now consists of the test loss evaluated

at all steps of the inner loop, which improves gradient propagation.

\′ := \ − V
)

)∑
C=1

 ∑
:=0
∇\Ltest

C (\C,:). (6.5)

Per Step Batch Normalization Every batch normalization layer now has an individual copy per

inner loop step, with its own weights, biases, and running statistics. This makes optimization

smoother because the model can now have different activation distributions for each inner loop

step.

82

6.2.4 Regularization Methods

There are two dominant approaches to mitigating task over-fitting in the meta-learning litera-

ture.

The first is to meta-learn parts of the model conditioned on the task. Suggested methods in-

clude meta-learning task-specific model parameters [184], loss functions [185], inner loop gradient

preconditioners [181, 182], initializations in a low dimensional latent space [186], and dropout pa-

rameters for each layer of the model [181]. Task conditioning methods help with task over-fitting,

but they also require substantial meta-training before the task-specific conditioning can be meta-

learned.

The second is to add a regularization term to the model update (i.e. outer loop update) equation.

Proposals include penalties on task entropy [172], task similarity [173], mutual information flow

between the test set and parameters unrelated to the inner loop learning process [175], and L2

distance between the model initialization before and model parameters after the inner loop learning

process [174]. Like us, [173]’s meta-learning method is inspired by multi-task learning, but their

work applies specifically to first-order approximation methods like Reptile [187], whereas our

work requires that the inner loop variables can be meta-learned and hence, applies to full second-

order methods like MAML.

Our work is an inner loop regularization method and is not based on task conditioning (although

it is complementary to it). This is a relatively under-explored area in the meta-learning literature.

The only closely related attempt that we are aware of is DropGrad [188], which randomly drops

task gradients during the inner loop. But as with outer loop regularization methods and unlike our

work, the meta-learned information has to be fully absorbed by the initialization, leading to slow

meta-training.

83

6.3 Insights from Multi-Task Learning

6.3.1 Multi-Task Learning Regularizes Meta-Learning

Existing meta-learning methods force most of the learned task-invariant information to reside

in the high-dimensional model initialization \. Because the interaction between different tasks

happens exclusively in the outer loop and \ can only be updated by backpropagating through

multiple gradient steps within the inner loop, this significantly slows down meta-learning and is

a major source of training instability [183]. Furthermore, a generic starting initialization without

sufficient meta-learned information tends to easily over-fit the training loss and not generalize

to the test loss within each task, causing meta-training to be especially sluggish initially. Most

improvements to the basic MAML algorithm (c.f. Section 6.2) can be seen as efforts to shift part

of the meta-learning away from the initialization and into auxiliary parameters within the inner

loop.

Fortunately, these challenges can be naturally overcome if across-task interactions occurred

within the inner loop as well. So doing both regularizes the inner loop learning process by reducing

task-specific over-fitting and minimizes the meta-learning burden on the outer loop by also learning

task-invariant information in the inner loop.

The most straightforward way of enabling inner loop task interactions is to contemporaneously

train against multiple tasks, which has a long established history rooted in the paradigm of multi-

task learning [177, 178]. Before discussing our proposed algorithm in depth, we briefly review

conventional challenges faced in multi-task learning, and show somewhat surprisingly that they

disappear within the context of meta-learning, thus allowing meta-learning and multi-task learning

to artlessly complement each other.

6.3.2 Meta-Learning Complements Multi-Task Learning

In classical supervised learning, we are training on dataset A and testing on dataset B within

the same task. The paradigm of multi-task learning proposes that jointly training on both A and

84

an auxiliary set of related tasks C8 will improve generalization on B, because the C8 regularize the

training towards inductive biases common to both A and B.

The effect of this regularization crucially depends on the relatedness between C8, A, and B.

If they are loosely related or adversarially related, multi-task learning can instead cause negative

transfer and be harmful to task performance and generalization [189, 190, 191, 192]. Moreover,

even when they are related, tasks should be combined in such a way that none dominates any other

and all tasks have a meaningful contribution to the learned model [193].

Therefore, in practice, good results rely on tuning a set of hyperparameters _8 to encode task

relatedness and control the strength of regularization.

Lmulti-task = L� +
∑
8

_8LC8 . (6.6)

Finding an appropriate set of hyperparameters _8 typically involves an expensive grid search or the

use of heuristics [193, 194, 195]. Additionally, better performance can be obtained from using _8

that vary over the training procedure. For example, high _8 might be preferable at the beginning of

the learning process as the model learns common aspects between the tasks. By contrast, lower _8

might make more sense during late-stage training when the model needs to fine-tune on �. Tuning

these dynamic sequences of _8 is a challenge in the classical multi-task setting.

In a typical meta-learning setup, these challenging issues conveniently cease to be a problem.

The _8 are no longer hyperparameters but instead parameters within the inner loop that can be

meta-learned. The _8 can therefore be automatically and dynamically tuned by the outer loop.

6.3.3 Applying Multi-Task Learning Asynchronously

However, there are a couple of new problems that arise from applying multi-task learning in

the inner loop of meta-learning. GPU memory capacity is already a bottleneck in meta-learning,

since storing sets of tasks instead of mere data points significantly increases memory use. Hence,

sharing information across all tasks at the same time is not feasible. Moreover, at meta-test time,

85

we are not allowed access to other tasks for training and each unseen task has to be evaluated

independently. Directly applying multi-task learning during meta-testing is thus not possible.

Even when we are not able to compute new gradients from other concurrent tasks, we observe

that we can sidestep this problem by reusing information that has been computed in previous iter-

ations. Hence, by storing task information from previously encountered tasks in external memory,

we can solve both the problem of small task batches and also enable multi-task learning during

meta-test time. In fact, memory-based approaches to meta-learning have been very successful,

but they generally require substantial amounts of computational resources and violate the model-

agnostic nature of MAML [167, 196].

Therefore, instead of storing information from related tasks directly, we propose to store infor-

mation from related task gradients. This can be done in a lightweight and model-agnostic nature

by simply maintaining a running mean of task gradients, similar to how batch normalization main-

tains a running mean of layer activations [197]. We present the gradient sharing algorithm in the

next section that explains our proposal in detail.

6.4 Gradient Sharing

Gradient sharing augments the standard MAML inner loop with a meta-learned regularizer that

shares gradient information from related tasks and is parametrized by m ∈ R , , ∈ R . f denotes

the sigmoid function.

InnerLoop(\,Ltrain
C ; m, ,) = \C, . (6.7)

At the :-th step of the inner loop, we first compute the normalized average gradient across the task

batch (Equation 6.8), and use it to update a running mean of task gradients 6̂: with an exponential

moving average factor f(m:) (Equation 6.9, 6.10). m: can be seen as a momentum variable that

controls the weight of recent gradient information relative to past gradients. While the model is

largely malleable in the early stages of meta-training, it makes sense for m: to be large so as to keep

86

pace with quickly changing task gradients. By contrast, near the end of meta-training, variations in

task gradients can mostly be attributed to sampling noise and thus, a small m: is needed for stable

training. Meta-learning m: gives the outer loop flexibility to adapt to both scenarios.

Next, the inner loop update is performed with Δ C,: which is a f(,:)-weighted linear interpo-

lation between the current task gradient ∇\C ,:−1Ltrain
C (\C,:−1) and the running mean task gradient

6̂: (Equation 6.11). ,: is a gating variable that decides the strength of the multi-task learning

regularization coming from related task gradients encountered in the current task batch and previ-

ously seen tasks. It is also meta-learned, thus allowing both the task distribution and the size of

the task batches to determine the appropriate amount of regularization. For simplicity and stor-

age efficiency, we choose to have a single parameter ,: model the relatedness of each task to all

other tasks, although it is straightforward to extend the proposed version of gradient sharing to use

task-conditioned parameters ,C,: to yield a direct equivalent of our discussion in Equation 6.6.

Finally, we combine the inner loop task losses to arrive at the outer loop update (Equation

6.12). At meta-test time, the inner loop is regularized using the 6̂: stored during meta-training.

We write the full gradient sharing algorithm in pseudo-code for vanilla MAML during the

meta-training and meta-testing phase in Algorithms 4 and 5 respectively. Notice that applying reg-

ularization in an inner loop gradient step changes subsequent gradient steps taken. While MAML

is usually written by looping over the task batch first and then the inner loop gradient steps, we

have to exchange the order of the two for loops in our algorithm. This does not affect the efficiency

of meta-learning, since the outer loop update can only be applied only after the completion of the

inner loop. Both orderings use memory and compute scaling in O()) per model update.

While the pseudo-code is written for vanilla MAML, gradient sharing can be applied in general

to any second-order gradient-based meta-learning method (i.e. the inner loop has to be differen-

tiable) by using the regularized Δ C,: in the place of an inner loop task gradient ∇\C ,:−1Ltrain
C (\C,:−1).

87

6.5 Experimental Results and Discussions

We study the effects of gradient sharing using two popular few-shot image classification datasets,

the Caltech-UCSD Birds-200-2011 (CUB) dataset [198] and the MiniImagenet dataset [75]. The

former consists of 100 meta-training classes, 50 meta-validation classes, and 50 meta-test classes.

The latter consists of 64 meta-training classes, 16 meta-validation classes, and 20 meta-test classes.

Each task involves 5-way and 1/5-shot classification on randomly sampled classes using the cross-

entropy loss. The goal of our experiments is to answer the following questions:

1. Does gradient sharing accelerate meta-training?

2. Does gradient sharing enable higher learning rates in the inner loop?

3. How does gradient sharing affect the eventual meta-test performance compared to the base-

line?

4. How do m and , change as meta-training proceeds?

The size of the task batch affects the variance of the task gradients and in the case of size 1, there is

an absence of gradients from related tasks in the same batch. Different meta-learning methods also

induce different meta-training dynamics: for example, MAML uses static learning rates, while

Meta-SGD meta-learns them. These factors affect the degree of task over-fitting and the rate at

which the outer loop corrects the inner loop over-fitting. Hence, in the interest of a comprehensive

experimental setup, we study answers to the above questions in two distinct regimes — task batches

of size 1 and 5 — and across three distinct meta-learning methods — MAML, Meta-SGD, and

MAML++.

For task batch size 5, we meta-train on CUB for 150 epochs and MiniImagenet for 250 epochs

using outer loop Adam [115] with default hyperparameters and inner loop gradient descent with

learning rate 0.1 and = 5 steps. For task batch size 1, we do 5x as many epochs. Each epoch

consists of 1000 iterations. More experimental details can be found in Appendix Section B.1.

88

We present our main findings with diagrams containing select subsets of all the experiments.

The interested reader is encouraged to verify that they hold generally and learn about particular

experimental nuances by viewing the full spectrum of our experiments in Appendix Section B.2.

6.5.1 Acceleration of Meta-Training

We observe in Figure 6.2 that in the initial phase of meta-training, prior to the initializa-

tion meta-learning sufficient task-invariant information, gradient sharing results in higher meta-

validation performance. This effect is significantly more pronounced when there are other concur-

rent tasks in the task batch, due to stronger regularization and smaller variance in task gradients,

as we can see by comparing the plots for task batch size 5 versus 1. This is clear evidence that

gradient sharing is indeed reducing inner loop over-fitting, because it consistently results in higher

inner loop test performance early on (Recall that the outer loop loss is a mean of the inner loop test

losses).

Achieving superior meta-training performance early on accelerates the overall meta-training

process. To quantify the amount of meta-training acceleration, we use the rate at which the

highest meta-validation accuracy is achieved as a proxy. Specifically, we calculate Speed-up =

EpochOG−EpochGS
EpochGS

where EpochOG and EpochGS is the earliest epoch when the highest meta-validation

accuracy is achieved for the original baseline and gradient sharing respectively. We see in Table

6.1 that gradient sharing results in a non-trivial amount of meta-training acceleration, potentially a

speed-up of up to 134% at comparable levels of meta-test accuracy.

6.5.2 Bigger Inner Loop Learning Rates

Another advantage to reducing inner loop over-fitting is the ability to use higher learning rates.

Figure 6.3 shows that gradient sharing achieves successful meta-training even when the inner loop

learners have been initialized with 10x their learning rate. Even though in theory, methods like

Meta-SGD and MAML++ allow the outer loop to adjust the inner loop learning rate to enable

training, we see that the baselines often fail to train at all or experience very sluggish meta-training.

89

0 50 100 150 200 250
Meta-Training Epochs

0.25

0.30

0.35

0.40

0.45

5
Ta

sk
MAML

Original
GradShare

0 50 100 150 200 250
Meta-Training Epochs

0.25

0.30

0.35

0.40

0.45

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

Meta-SGD

Original
GradShare

0 50 100 150 200 250
Meta-Training Epochs

0.30

0.35

0.40

0.45

0.50

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

MAML++

Original
GradShare

0 200 400 600 800 1000 1200
Meta-Training Epochs

0.25

0.30

0.35

0.40

0.45

1
Ta

sk

Original
GradShare

0 200 400 600 800 1000 1200
Meta-Training Epochs

0.25

0.30

0.35

0.40

0.45

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

Original
GradShare

0 200 400 600 800 1000 1200
Meta-Training Epochs

0.30

0.35

0.40

0.45

0.50

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

Original
GradShare

Figure 6.2: Meta-validation accuracy plots on 5-way 1-shot classification on the MiniImagenet
dataset. Gradient sharing accelerates meta-learning by reducing inner loop over-fitting in early
stage meta-training. The acceleration is more pronounced when there are other concurrent tasks in
the inner loop.

Higher inner loop learning rates produces superior meta-test generalization under certain circum-

stances [179], and additional robustness to meta learning hyperparameters is generally very desir-

able.

6.5.3 Comparable Meta-Test Performance

We did meta-testing using an ensemble of the top 5 meta-validation accuracy models follow-

ing the methodology of the MAML++ paper [183]. From Table 6.1, we see that gradient sharing

achieves comparable or better meta-test performance than the respective baselines. It is important

to note that optimization acceleration schemes in the conventional machine learning literature are

often prone to introducing biases in the model that adversely impact generalization [147, 148]. De-

spite the complexities of the inner and outer loop interactions, gradient sharing achieves significant

acceleration without compromising on meta-test performance.

90

0 20 40 60 80 100 120 140
Meta-Training Epochs

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

MAML 10x LR
Original
GradShare

0 20 40 60 80 100 120 140
Meta-Training Epochs

0.20

0.25

0.30

0.35

0.40

0.45

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

Meta-SGD 10x LR
Original
GradShare

0 20 40 60 80 100 120 140
Meta-Training Epochs

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

MAML++ 10x LR
Original
GradShare

Figure 6.3: Meta-validation accuracy plots on 5-way 1-shot classification on the CUB dataset
with task batch size 5 and 10x the inner loop learning rate. Gradient sharing successfully enables
meta-training on baseline meta-learning methods that either do not meta-train at all or experience
sluggish meta-training.

0 25 50 75 100 125 150
Meta-Training Epochs

0.3

0.4

0.5

0.6

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

Original
GradShare

0 25 50 75 100 125 150
Meta-Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 S
ha

rin
g

Pa
ra

m
et

er

Low m Low
m = k[(mk)]

= k[(k)]

0 200 400 600 800 1000 1200
Meta-Training Epochs

0.40

0.45

0.50

0.55

0.60

0.65

M
et

a-
Va

lid
at

io
n

Ac
cu

ra
cy

Original
GradShare

0 200 400 600 800 1000 1200
Meta-Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 S
ha

rin
g

Pa
ra

m
et

er

High m High

m = k[(mk)]
= k[(k)]

Figure 6.4: The left two plots show the results of meta-training using gradient sharing on 5-way
1-shot classification on CUB using MAML with task batch size 5. They represent a successful
example of gradient sharing with the outer loop meta-learning low values for both m and ,. The
right two plots show meta-training results for 5-way 5-shot classification on MiniImagenet using
MAML++ with task batch size 1. They represent a pathological example of gradient sharing with
the outer loop meta-learning high values for both m and ,.

6.5.4 Evolution of m and , through Meta-Training

In the previous sections, we had argued that meta-learning compliments multi-task learning by

allowing us to meta-learn the task combination coefficients. In gradient sharing, this amounts to

tuning m: and ,: to their appropriate values. On the left two sub-figures of Figure 6.4, we observe

that accelerated meta-training goes hand in hand with reduced values of the averages of m: and ,:

as meta-training proceeds, which agrees with what we had discussed in Sections 6.3 and 6.4.

The right two sub-figures of Figure 6.4 show a characteristically different pattern. We observe

that the outer loop meta-learns high values of m: and ,: as meta-training proceeds. High m:

91

indicates that the store of task gradients 6̂: has not stabilized and recent task gradients are contin-

ually overwriting it. High ,: suggests an excessive amount of regularization is being applied; in

fact, at the limit of f(,:) = 1.0, the true task gradient ∇\C ,:−1Ltrain
C (\C,:−1) is completely masked

out, effectively making it zero-shot instead of few-shot learning. This pathological phenomenon of

high m: and ,: is congruent with the observed result of gradient sharing exacerbating the original

MAML++ baseline’s outer loop over-fitting in this case.

The over-fitting of the outer loop has not proven to be a serious issue in our work due to the

use of early stopping (since we select the meta-test model using the meta-validation set). However,

looking into combinations of outer and inner loop regularization, for example task-conditioned

mC,: and ,C,: , is an important topic for future work.

6.6 Conclusion

In this work, we developed a technique inspired by multi-task learning to mitigate over-fitting

within the inner loop of meta-learning. Our proposed method accelerates meta-training under

comparable meta-test performance and makes it robust to inner loop learners with higher learning

rates. Given that meta-learning is significantly more computationally expensive than conventional

machine learning, we hope that our work will inspire more research into inner loop regularization

methods for meta-learning that will accelerate meta-training. Alternative methods would be es-

pecially helpful for the case of meta-training under task batch size 1, since the lack of concurrent

tasks limits the utility of our multi-task learning inspired solution. Finally, further such research

can also be expected to robustify meta-learning so that it works with a wider range of inner loop

learners.

92

Algorithm 4: Gradient Sharing for MAML Meta-Training.
Initialize \,) , , m = 0, , = 0.
for 8 = 1 to =D<"4C0CA08=�C4AB do

Sample batch B with) tasks from meta-training set.
Initialize \C,0 = \ for all tasks C in B.
// is the number of inner loop gradient steps.
for : = 1 to do

// Calculate normalized mean of task gradients in B.

6: =

∑)
C=1 ∇\C ,:−1Ltrain

C (\C,:−1)
| |∑)

C=1 ∇\C ,:−1Ltrain
C (\C,:−1) | |2

. (6.8)

// Calculate running mean gradient statistics 6̂: .
if 8 = 1 then

6̂: = 6: . (6.9)

else

6̂: = f(m:)6: + (1 − f(m:))6̂: . (6.10)

end if
for task C in batch B do

// Apply inner loop update.

Δ C,: = f(,:)6̂: + (1 − f(,:))∇\C ,:−1Ltrain
C (\C,:−1).

\C,: = \C,:−1 − UΔ C,: .
(6.11)

end for
end for
// Apply outer loop update.

(\′,m′, ,′) = (\,m, ,) − V
)

)∑
C=1
∇(\,m,,)Ltest

C (\C,). (6.12)

end for

93

Algorithm 5: Gradient Sharing for MAML Meta-Testing.
for task C in meta-testing set do

Initialize \C,0 = \.
for : = 1 to do
Δ C,: = f(,:)6̂: +

(1 − f(,:))∇\C ,:−1Ltrain
C (\C,:−1).

\C,: = \C,:−1 − UΔ C,: .
end for
Evaluate task C’s test performance with Ltest

C (\C,).
end for

Table 6.1: Meta-test accuracy (with 95% confidence intervals) and speed-up for 5-way 5-shot clas-
sification for the CUB and MiniImagenet datasets. Gradient sharing achieves comparable meta-test
accuracy, but often in a fraction of the number of meta-training epochs.

CUB MINIIMAGENET

METHOD TASKS ORIGINAL GRADSHARE SPEED-UP ORIGINAL GRADSHARE SPEED-UP

MAML 5 83.2 ± 1.4% 83.4 ± 1.4% 66% 67.7 ± 1.8% 67.0 ± 1.8% 1%
MAML 1 82.6 ± 1.5% 82.7 ± 1.5% 44% 66.4 ± 1.8% 68.3 ± 1.8% 134%
META-SGD 5 80.7 ± 1.5% 80.3 ± 1.5% 100% 67.0 ± 1.8% 67.4 ± 1.8% 61%
META-SGD 1 81.6 ± 1.5% 79.6 ± 1.6% 54% 64.8 ± 1.9% 64.9 ± 1.9% 37%
MAML++ 5 72.7 ± 1.7% 73.8 ± 1.7% 42% 68.9 ± 1.8% 69.4 ± 1.8% 26%
MAML++ 1 76.1 ± 1.7% 76.5 ± 1.6% 100% 69.1 ± 1.8% 66.8 ± 1.8% 71%

94

Chapter 7: Logical Networks

7.1 Introduction

Machine learning systems have become increasingly capable at a wide range of tasks, with

neural network based models outperforming humans at tasks like object recognition [8], speech

recognition [9, 199], the game of Go [200, 11], Atari videogames [201, 202], and more. Nonethe-

less, the success of deep learning comes with significant caveats: neural networks require immense

amounts of labeled data for training, can be easily tricked by tiny input perturbations or spurious

correlations, and succumb to brittle generalization when tested on data that deviate ever so mod-

estly from the training distribution. Critics point to these caveats as evidence that deep learning, in

its current incarnation, is really just performing a sophisticated type of pattern matching, the likes

of which can only ever constitute intelligence in narrow, circumscribed domains [203, 204].

By comparison, human intelligence can be applied more generally. This has been argued to be

a result of two distinct modes of cognition: System 1 and System 2 [205, 206]. System 1 happens

quickly and without conscious effort, for example comparing the size of objects or locating the

general source of a sound. On the other hand, System 2 involves slow and deliberate attention,

for example solving for a complicated arithmetic equation or checking that an argument is logical.

Current machine learning systems have been likened to System 1 [207], because System 1 mostly

involves the use of associative memory, and is highly susceptible to cognitive biases and sensory

illusions. Symbolic AI algorithms that are based on logic and search more closely resemble Sys-

tem 2.

To achieve robust human-level AI that can solve non-trivial cognitive tasks, it is crucial to

combine both System 1 like pattern recognition and System 2 like logical reasoning capabilities

in a seamless end-to-end learning fashion. This is because in many practical problems of inter-

95

est, it is difficult and expensive to collect intermediate labels to train specific machine learning

sub-components. For example, it appears infeasible to build a ‘danger’ classifier for a self-driving

car, where every possible dangerous scenario is pre-determined and categorized beforehand. Re-

searchers are thus far able to combine both capabilities in a single AI system, but not train them

end-to-end. Famously, OpenAI’s very impressive achievement of controlling a robotic hand to

solve a Rubik’s cube required the separate use of a machine learning system to perform the dexter-

ous manipulation and a discrete solver to decide the side of the cube that should be turned [208].

Attempts to bridge the two capabilities seamlessly belong to one of three approaches. The first

involves augmenting deep learning models with soft logic operators [209, 210, 211, 212, 213, 214,

215] or combinatorial solving modules [216, 217, 218, 219, 220]. However, this approach typi-

cally requires the programmer to pre-specify intricate logical structures according to the problem

domain. Moreover, these logical components are fixed and not amenable to learning. The second

approach uses sub-symbolic reasoning techniques like Recurrent Relation Networks to implicitly

pick up on logical structures within the problem [170, 221, 222]. This approach improves on the

first by learning the logical structure implicitly by optimization, but nevertheless also necessitates

careful feature engineering. The third approach is the field of inductive logic programming (ILP),

which starts from a traditional symbolic AI model like a knowledge base, and adds learning ca-

pabilities to it [223, 224, 225, 226]. Unfortunately, ILP is limited to symbolic inputs and outputs,

unlike deep neural networks.

Against the backdrop of such approaches, SATNet [83] promised to integrate “logical struc-

tures within deep learning” with a differentiable MAXSAT solver that can infer logical rules and

be used as a neural network layer. SATNet claimed to have solved problems that were “impossible

for traditional deep learning methods and existing logical learning methods to reliably learn with-

out any prior knowledge,” most notably solving a Sudoku puzzle visually from images of puzzle

digits, and was awarded with a Best Paper Honorable Mention at 2019’s International Conference

on Machine Learning.

Based on SATNet’s success, one might think that enabling end-to-end gradient-based optimiza-

96

tion (i.e. making every component in a system differentiable) is sufficient for end-to-end learning

(i.e. learning without intermediate supervision signals). However, defining gradients for an objec-

tive does not, on its own, result in successful learning outcomes, as exemplified by the history of

deep learning. Successful training of architectures with hundreds of layers, where gradients are

trivially well defined, is highly non-trivial and requires careful initialization, batch normalization,

adaptive learning rates, etc. Additionally, without an appropriate inductive bias (like the rules of

the game), learning to solve complex problems like visual Sudoku from relatively few samples

is extraordinarily challenging. It is unlikely that end-to-end gradient-based optimization by itself

will, in general, result in models that generalize well.

Thus, SATNet’s claim to have solved the end-to-end learning problem of visual Sudoku “in a

minimally supervised fashion” should be revisited. Can SATNet learn to assign logical variables

(symbols) to images of digits (perceptual phenomena) without explicit supervision of this

mapping? This is also known as the symbol grounding problem [84], which has long been thought

to be a prerequisite for intelligent agents to perform real-world logical reasoning. If answered in

the affirmative, SATNet would have marked a revolutionary leap forward for the whole field of AI,

by virtue of the difficulty of the symbol grounding problem in visual Sudoku.

The general complexity of the symbol grounding problem embedded in end-to-end learning

should not be underestimated. Figure 7.1 directly exemplifies the difficulty of the symbol ground-

ing problem for both human and artificial intelligence. Common measures of abstract reasoning

in artificial intelligence such as DeepMind’s PGM work similarly to Raven’s Progressive Matrices

(a test for human intelligence), where predicting what comes next involves determining the hidden

attributes (symbols) in what has been presented (perceptual phenomena), and inferring the pattern

from them [204, 227, 228, 229]. Once given the hidden attributes, it is trivial for a human or a

combinatorial solver to infer the pattern [227]. However, jointly inferring the hidden attributes

together with the pattern proves to be a challenging cognitive task in general.

97

Figure 7.1: A challenging Raven’s Matrix puzzle that exemplifies a difficult instance of the symbol
grounding problem. We invite the reader to attempt the puzzle for themselves on the left hand side
of the figure first, before looking at the annotations on the right hand side. Once the given images
have been decoded to an appropriate symbolic representation, it is straightforward for a discrete
solver or a human to solve it. For a full explanation of the solution, please see Appendix Section
C.1.

7.1.1 Our Contribution

In this chapter, our principal contribution is a re-assessment of SATNet that clarifies the extent

of its capabilities and a discussion of practical solutions that will help future researchers train

SATNet layers in deep networks.

First, we observed from the SATNet authors’ open-source code that intermediate labels are

leaked in the SATNet training process for visual Sudoku. The leaked labels essentially result in a

two-step training process for SATNet, where it first uses the leaked labels to train a digit classifier,

and then uses the symbolic representations of the digits to solve for the Sudoku puzzle. After

removing the intermediate labels, SATNet was observed to completely fail at visual Sudoku (0%

98

test accuracy). If intermediate labels are available, it is possible to separately pre-train a digit

classifier and then use SATNet, independent of a deep network, to solve for the puzzle. This might

even be preferable, given our finding that SATNet fails in 8 out of 10 random seeds despite access

to the labels, which is evidence that SATNet struggles to learn to ground the Sudoku digits into

their symbolic representation. To be clear, the label leakage did not affect SATNet in the non-visual

case, and its success on purely symbolic inputs and outputs nonetheless marks progress in ILP, but

does not fix the field’s persisting deficiency in dealing with perceptual input.

While solving difficult instances of the symbol grounding problem like visual Sudoku or PGM

might be beyond the reach of SATNet, we found that SATNet also cannot solve easy instances,

unless properly configured. We devised a test called the MNIST mapping problem, whose solution

requires merely digit classification (a simple problem for neural networks) and learning a bijective

mapping between logical variables (a simple problem for discrete solvers). This test serves as

an easy instance of the symbol grounding problem, and is suitable as a sanity test not just for

SATNet, but other prospective differentiable symbolic solvers. Even on a simple test like this, a

naive application of SATNet can cause it to perform worse than models without logical reasoning

capabilities.

Our work identifies several factors that affect the learning dynamics of SATNet and provides

practical suggestions for configuring SATNet to enable successful training. We reveal surprising

complexities that are unique to SATNet and break standard deep learning norms. For example,

using different learning rates for different layers in neural networks is not a common practice,

since the use of Adam usually suffices. But for the case of SATNet, even when Adam is used,

the backbone layer has to learn at a slower rate than the SATNet layer for successful training to

occur. Surprisingly, we found that unconditionally increasing the number of auxiliary variables

does not increase the expressivity of the model, but instead leads to a complete failure in learning.

Further adjusting the choice of optimizer and neural architecture led to statistically significant

improvements, culminating in near perfect test accuracy (99%).

The rest of the chapter is organized as follows: Section 7.2 reviews the relevant technical

99

background for SATNet and visual Sudoku. Section 7.3 examines the subtle nature of the label

leakage in the original SATNet paper and its ramifications. Section 7.4 describes the MNIST

mapping problem, and investigates optimal SATNet configurations for this simple MNIST-based

test. Finally, we conclude in Section 7.5.

7.2 Background

7.2.1 SATNet

SATNet is a neural network layer that solves a semidefinite programming (SDP) relaxation of

the following MAXSAT problem,

max
Ẽ∈{−1,1}=

<∑
9=1

=∨
8=1

1
{
B̃8 9 Ẽ8 > 0

}
, (7.1)

where Ẽ ∈ {−1, 1}= denotes assignments to = binary variables, and B̃8 ∈ {−1, 0, 1}< denotes the

sign of variable Ẽ8 in < clauses. The set of B̃8 9 , denoted by (, forms the SATNet layer’s learnable

parameters. Ẽ can be partitioned into two disjoint sets I and O, which are represented in SATNet

by layer inputs /I and outputs /O (which can be either probabilistic or strictly binary), and their

respective continuous relaxations +I and +O . Gradients from the layer output ∇/OL are backprop-

agated to both the layer’s weights in the form of ∇(L and to the layer input in the form of ∇/IL.

The two main tunable hyperparameters in a SATNet layer are the number of clauses < and the

number of auxiliary variables 0DG (which “play a role akin to register memory that is useful for

inference”). Auxiliary variables are also input variables, but unlike /I , they are not the output of

preceding layers.

7.2.2 Visual Sudoku

Sudoku is a number puzzle played out on a 9-by-9 grid. Each of the 9x9=81 cells has to

contain a digit from 1 to 9. The game starts out from a partially filled grid, and the object of the

game is to complete the rest of the cells on the grid. Each of the digits from 1 to 9 has to appear

100

exactly once in every row, column, and each of the nine 3-by-3 subgrids. In the non-visual case,

the state of the Sudoku grid can be encoded using 9x81=729 binary variables, and SATNet can

learn to map from the binary encoding of the initial grid to the binary encoding of the completed

grid without the programmer having to explicitly encode for the rules of the game. Given 9000

training and 1000 test examples (with 36.2 pre-filled cells on average), where each example is

a pair consisting of the initial and completed grid, SATNet achieves 99.7% training and 98.3%

test accuracy. By comparison, a symbolic solver that knows the rules of the game can provably

solve the game perfectly [230], while a purely deep learning based approach, trained on a million

examples, scores 70.0% on a test set of thirty games [231]. We report on other related work on

non-visual Sudoku in Appendix Section C.2.

In visual Sudoku, the inputs are now 81 images of digits (taken from the MNIST dataset), with

‘0’ standing in for empty cells. They are processed by a convolutional neural network (CNN)

backbone with a SATNet layer, which performs at 93.6% training and 63.2% test accuracy using

the same number of training and test examples. The SATNet authors contextualized their findings

by claiming that the “theoretical best” test accuracy is capped at 74.8% (≈ 0.99236.2), which is

the probability that the LeNet1 CNN backbone, which has 99.2% test accuracy on MNIST, has

correctly classified all the pre-filled cells.

7.3 SATNet Fails at Symbol Grounding

7.3.1 The Absence of Output Masking

While every Sudoku puzzle corresponds to 729 logical variables in the MAXSAT problem

(excluding the auxiliary variables for now), the number of pre-filled cells and their positions differ

depending on the puzzle. Thus, I and O are different for each example, even though the sizes of

/I and /O are fixed beforehand and not example-dependent. A straightforward way to solve this

is to apply an appropriate bit mask depending on the example.

Consider a toy example with 5 variables E1 = 1, E2 = 0, E3 = 0, E4 = 1, E5 = 0 where I =

1To be precise, the SATNet authors used a bigger version with ∼10x more parameters than the original.

101

Figure 7.2: A visualization of the difference between symbolic and perceptual inputs.

{1, 2, 3} and O = {4, 5}. Then, the input to SATNet should be 10000 with the bit mask 11100,

and the output should be 00010 with the bit mask 00011. The problem with the original SATNet

implementation is that the bits that correspond to the inputs are not masked in the output.

Not masking the output might not seem problematic, given that SATNet does not modify input

variables /I nor their relaxations +I . But consider the decomposition of the loss function L into

a sum of binary cross entropies (BCE) between the SATNet variables I and the training label ;.

L =
=∑
8=1

BCE(I8, ;8) =
∑
8∈I

BCE(I8, ;8) +
∑
>∈O

BCE(I>, ;>). (7.2)

Since the II are not modified by SATNet, I8 = ;8 for 8 ∈ I, effectively zero-ing out any loss

contributed by terms in II . This is true when SATNet is applied to purely symbolic problems like

non-visual Sudoku.

However, once perceptual input is introduced, I8 is not directly accessible by SATNet. Instead,

the input to the SATNet layer is a symbolic representation I′
8

of features extracted from the data

(see Figure 7.2). Thus, the loss from II in Equation 7.2 is non-zero before the neural network has

learned to ground the symbols appropriately, i.e. I′
8
= I8 = ;8. Not masking the output to SATNet

thus leaks label information to the layers before the SATNet layer, effectively training a classifier

that learns to map from the perceptual data to the appropriate symbol representation, i.e. symbol

grounding.

102

7.3.2 Visual Sudoku

Table 7.1: Effects of Output Masking
Non-Visual Sudoku Visual Sudoku

Accuracy Original Masked Outputs Original Masked Outputs

Train 99.7±0.0% 99.7±0.0% 18.5±12.3% 0.0±0.0%
Test 97.6±0.1% 97.6±0.1% 11.9±7.9% 0.0±0.0%

We re-ran the Sudoku experiments using the SATNet authors’ open-sourced implementation

with identical experimental settings, but over 10 different random seeds to get standard error con-

fidence intervals. Table 7.1 shows clearly that output masking does not affect the results in the

non-visual case, but causes SATNet to fail completely for visual Sudoku, which is what we ex-

pect from the discussion in the previous section. Once the intermediate labels are gone, the CNN

does not ever learn to classify the digits better than chance. SATNet’s failure at symbol grounding

directly leads to its failure at the overall visual Sudoku task.

Interestingly, we also found that SATNet’s performance in visual Sudoku in the absence of

output masking is highly dependent on the random initialization, with 8/10 random seeds leading

to complete failure as well. This explains why SATNet’s performance over 10 runs (18.5% train-

ing accuracy) is dramatically lower than what was originally reported (93.6% training accuracy).

Therefore, even for problems where we have access to intermediate labels, leaking them indirectly

via the absence of output masking is strictly less desirable than directly pre-training a neural net-

work classifier with those labels. In Section 7.4.1, we note important strategies for mitigating

complete failure.

Of the 2 runs that succeeded (i.e. had non-zero training accuracy, specifically 93.2% and 91.7%

respectively), we found that the label leakage basically results in a two-step training process for

SATNet, where the CNN first learns to do MNIST digit classification, and then the SATNet layer

learns to solve the actual Sudoku problem. We show in Figure 7.3 training accuracy plots of two

example runs, one successful and the other not. They are annotated with corresponding plots (at

the bottom for comparison) of the CNN’s classification accuracy on the MNIST test set. For the

103

successful runs, we observe that the training accuracy for visual Sudoku stays at zero for a small

number of epochs, during which time the leaked labels help train the CNN to be an MNIST digit

classifier. Only after the digit classifier works to some degree, does the training accuracy for visual

Sudoku actually become non-zero. By contrast, in most of the unsuccessful runs, the CNN takes a

very long time to become somewhat proficient at digit classification, and even after it does so, the

SATNet layer seems unable to adapt to it, resulting in a permanent plateau at 0% training accuracy.

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

 (%
)

Visual Sudoku (Successful)

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Te
st

 A
cc

 (%
)

MNIST

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

 (%
)

Visual Sudoku (Unsuccessful)

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Te
st

 A
cc

 (%
)

MNIST

Figure 7.3: The graphs on the left show a successful run of SATNet on visual Sudoku, while the
graphs on the right show an unsuccessful run. The successful run in the absence of output masking
leads to a two-step training process, where the CNN first rapidly learns to classify digits, and then
the SATNet layer learns to solve for Sudoku. The red vertical dotted line demarcates the point at
which the training accuracy for visual Sudoku becomes non-zero. Unsuccessful runs typically take
a long time for the CNN to classify digits, and never does better than 0% training accuracy at the
overall visual Sudoku task.

7.4 MNIST Mapping Problem

The MNIST mapping problem involves a symbolic problem with 20 variables E8, where the first

ten variables are input (i.e. I = {1, . . . , 10}), and the next ten are output (i.e. O = {11, . . . , 20}).

But the EI are not provided directly; instead the input is given as perceptual data in the form of an

104

MNIST digit image, and the challenge is to map an image of digit 8 to the variable E11+8. We assume

that these variables are boolean (or the probabilistic equivalent, i.e. random variables taking real

values in [0, 1]), but this should be adapted accordingly to the symbolic representation of a given

solver.

There are two distinct sub-problems. The first sub-problem involves classifying an MNIST

digit image into E1, . . . , E10 (using a neural network). The second sub-problem involves learning a

bijection (or an equivalent permutation) to E11, . . . , E20 (using a symbolic solver), from which the

class of the input image has to be identified. Both sub-problems taken on their own are considered

to be easy problems. MNIST digits can be easily classified to 99% test accuracy [232], while

permutation groups under equivalence queries are known to be exactly learnable in polynomial

time [233]. Hence, we propose that a suitable sanity test for a differentiable symbolic solver is to

solve the MNIST mapping problem to an accuracy of 99%. Note that a model that does not have to

learn the bijection can circumvent the symbol grounding problem entirely by simply learning the

output labels directly. Therefore, the test is strictly intended to be a check for symbol grounding,

rather than a grand AI challenge that necessitates the combination of pattern recognition and logical

reasoning as in visual Sudoku or PGM.

7.4.1 Configuring SATNet Properly

Surprisingly, some SATNet configurations fail the test, not by a slight margin, but completely

(i.e. test accuracy no better than chance; we count them using 12% as a threshold to account for

variance). In general, we found that the successful training of SATNet can be very sensitive to

specific combinations of hyperparameters, optimizers, and neural architectures. We present four

empirical findings using experiments on the MNIST mapping problem. All experiments were

ran for 50 training epochs over 10 random seeds to get standard error confidence intervals. The

Sudoku CNN, which was the backbone architecture used in the SATNet author’s visual Sudoku

implementation, is used throughout unless stated otherwise. We evaluate the results by presenting

test accuracies with their confidence intervals and the number of complete failures in parenthe-

105

ses. For comparison, a non-SATNet baseline, which consists of the Sudoku CNN but with the

SATNet layer replaced by two fully connected layers (1000 hidden units and ReLU), performs at

72.1±13.3% (3). At a minimum, SATNet should perform better than that, since its raison d’être

disappears if it can be bested by equivalent models without logical reasoning capabilities.

Finding 1 Too little “logic” (i.e. low <) or too much “slack” (i.e. high 0DG) can cause failure.

20 40 60 80
Number of Clauses (m)

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Effect of m

aux=50
aux=100
aux=200

200 400 600 800
Number of Auxiliary Variables (aux)

20

30

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

Effect of aux
m=100
m=200
m=400

Figure 7.4: Both graphs show test accuracy on the MNIST mapping problem with the shaded
interval representing the standard error.

The number of clauses < controls the capacity of SATNet (rank of clause matrix), and we

found that it can cause failure or result in terrible test accuracy when it is too low relative to what

is needed for the problem. The number of auxiliary variables 0DG also controls model capacity,

but we observed that if it is too high for a given <, it can also cause failure (because most of the

clauses end up being filled with meaningless input-independent auxiliary variables). High < or

low 0DG do not affect test accuracy on the MNIST mapping problem, but they affect the amount of

compute the SATNet layer uses.

Finding 2 The backbone layer has to learn at a slower rate than the SATNet layer.

Table 7.2 shows the effect of differential learning rates between the SATNet and CNN back-

bone layers on test accuracy and number of failures, using Adam [115] for both layers. If the

106

Table 7.2: Effects of Different Learning Rates on the SATNet and Backbone Layer on Test Accu-
racy

SATNet Layer Backbone Layer Learning Rate

Learning Rate 1x10-3 1x10-4 1x10-5

1x10-3 19.9±8.6% (9) 90.0±8.7% (1) 96.3±0.2% (0)
1x10-4 17.4±4.3% (8) 74.6±8.6% (0) 96.1±0.2% (0)
1x10-5 14.8±3.6% (9) 31.7±7.1% (5) 72.4±5.3% (0)

backbone layer has a higher learning rate than the SATNet layer, this often leads to failure. Opti-

mal performance is observed when the backbone layer has a lower learning rate than the SATNet

layer. Note that this might be counter-intuitive, given that in the label leakage scenario, the back-

bone CNN had to learn digit recognition before the SATNet layer could learn to solve Sudoku. But

without label leakage, having a higher learning rate for the backbone does not make sense because

it cannot learn anything useful without the help of the SATNet layer.

Finding 3 Optimizing the backbone layer with SGD and the SATNet layer with Adam improves

both training and test accuracy.

Instead of simply using different learning rates, swapping the optimizer for the backbone layer

with SGD raises test accuracy from 96.3 ±0.2% (0) to 98.6±0.1% (0) (similarly so for training

accuracy).

Finding 4 A sigmoid output layer for the backbone is preferable to softmax.

Table 7.3: Effects of Different Neural Architectures on Test Accuracy
Backbone Output Layer

Architectures Parameters Softmax Sigmoid

LeNet [232] 68,626 63.3±14.1% (4) 98.8±0.0% (0)
Sudoku CNN 860,780 98.6±0.1% (0) 99.1±0.0% (0)

ResNet18 [160] 11,723,722 67.6±6.3% (0) 97.2±0.9% (0)

The output of the CNN backbone has to take real values in [0, 1]; the SATNet authors’ imple-

mentation used a softmax output layer to achieve this. We found that a sigmoid output layer strictly

107

outperforms a softmax layer in all three architectures tested. When softmax is used, we observed

that the size of the architecture can result in poor performance if it is too small or too big. In the

case where it is too big, it is possible for accuracy to degrade rapidly after reaching its peak (we

don’t use early stopping). Of the three, the Sudoku CNN appears to be the optimal size.

Every model we tested failed at visual Sudoku, demonstrating the non-triviality of visual Su-

doku’s grounding problem (since getting even one puzzle in the test set correct necessitates the

accurate classification of 36.2 digits on average). However, even for a seemingly easy instance of

the symbol grounding problem in the form of MNIST mapping, it was highly non-trivial to find

the correct SATNet configuration that would lead to 99% test accuracy. This shows that the cur-

rent state of SATNet falls significantly short of its promise to integrate logical reasoning in deep

learning.

7.5 Conclusion

In this chapter, we presented a detailed analysis of SATNet’s capabilities, and provided prac-

tical solutions that will help future researchers train SATNet layers in their deep neural networks

more effectively. Specifically, we noted that the original experimental setup for visual Sudoku

resulted in intermediate label leakage. After removing the intermediate labels, SATNet is found to

completely fail at the task of visual Sudoku due to its inability to ground the images of the puzzle

digits into the appropriate symbolic representation. We further introduced the MNIST mapping

problem as an easier instance of the symbol grounding problem compared to visual Sudoku, and

found that SATNet needs to be delicately configured for training to be successful. In particular, the

number of auxiliary variables cannot be increased unconditionally with respect to the number of

clauses, and the backbone layer has to learn at a slower rate than the SATNet layer.

We can apply what we have learned about SATNet and its failure to solve visual Sudoku’s

symbol grounding problem more generally to other attempts to integrate logical reasoning into

deep learning. Given that logical reasoning modules act at a symbolic level, while generic deep

learning modules act at a sub-symbolic level, the interface between these two levels has to involve a

108

symbol grounding problem. Hence, even if the intermediate label leakage identified in this chapter

might be SATNet-specific, we think that explicit tests against simple, interpretable instances of the

symbol grounding problem will be fruitful for future researchers in discerning their claims about

end-to-end learning (versus end-to-end gradient-based optimization).

In general, we think that the differences between deep learning and logic mirror the ones be-

tween continuous and discrete optimization. These differences go far deeper than the superficial

lack of derivatives in discrete optimization, and we believe true progress has to come from signif-

icantly tighter integrations between deep learning and logic. We are excited that our work brings

these differences to the forefront and encourages the community to think more critically about how

to go about integrating logical reasoning into deep learning.

109

Directions for Future Work

Here are some promising directions for future work:

1. Scalability Meta-learning methods like hypernetworks or MAML involve an extra level of

backpropagation, thus making them significantly more expensive in terms of compute and

memory. Improving the efficiency of these methods will help them scale to novel use cases

like mobile or edge computing, which might be prohibitive currently.

2. Optimization Little is known about the optimization properties of many of these

meta-learning methods, and why exactly they are so successful. A deeper understanding of

how information is shared across different tasks and settings will yield better methods for

extracting invariant and equivariant representations.

3. Logical Reasoning A lot of what we consider meta information can be expressed in logical

form. For example, grammar is the meta rule that seems to emerge from the arbitrary

statistical correlations expressed by a language model. Figuring out how to use

auto-generative networks and meta-learning to extract out logical rules from statistical

patterns will go a long way towards remedying the current deficits of deep learning systems.

110

References

[1] Bloomberg, Tesla’s elon musk: We’re ’summoning the demon’ with artificial intelligence,
Youtube, 2014.

[2] R. Cellan-Jones, Stephen hawking warns artificial intelligence could end mankind, BBC,
2014.

[3] S. Russell, D. Dewey, and M. Tegmark, “Research priorities for robust and beneficial arti-
ficial intelligence,” Ai Magazine, vol. 36, no. 4, pp. 105–114, 2015.

[4] R. Kurzweil, The singularity is near: When humans transcend biology. Penguin, 2005.

[5] K. Grace, J. Salvatier, A. Dafoe, B. Zhang, and O.
Evans, “When will ai exceed human performance,”
Evidence from AI Experts. Disponível em:< https://arxiv. org/abs/1705.08807> Acesso em,
vol. 24, no. 08, 2017.

[6] C. F. Bolz-Tereick, The first 15 years of pypy — a personal retrospective, PyPy Status
Blog, 2018.

[7] K. Thompson, “Reflections on trusting trust,” Communications of the ACM, vol. 27, no. 8,
pp. 761–763, 1984.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[9] W Xiong, L Wu, F Alleva, J Droppo, X Huang, and A Stolcke, “The microsoft 2017 con-
versational speech recognition system,” arXiv preprint arXiv:1708.06073, 2017.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[12] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang,
R. Skerry-Ryan, et al., “Natural tts synthesis by conditioning wavenet on mel spectrogram
predictions,” arXiv preprint arXiv:1712.05884, 2017.

111

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–6008.

[14] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[15] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, “Generating
sentences from a continuous space,” arXiv preprint arXiv:1511.06349, 2015.

[16] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros, “Everybody dance now,”
arXiv preprint arXiv:1808.07371, 2018.

[17] N. Anand and P. Huang, Generative modeling for protein structures, 2018.

[18] M. Kudlek, “On the existence of universal finite or pushdown automata,”
arXiv preprint arXiv:1207.7149, 2012.

[19] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[20] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[21] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural nets,”
Journal of computer and system sciences, vol. 50, no. 1, pp. 132–150, 1995.

[22] E. Jonas and K. P. Kording, “Could a neuroscientist understand a microprocessor?”
PLoS computational biology, vol. 13, no. 1, e1005268, 2017.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,” in
Advances in neural information processing systems, 2013, pp. 3111–3119.

[24] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architec-
tures for named entity recognition,” arXiv preprint arXiv:1603.01360, 2016.

[25] B. Plank, A. Søgaard, and Y. Goldberg, “Multilingual part-of-speech tag-
ging with bidirectional long short-term memory models and auxiliary loss,”
arXiv preprint arXiv:1604.05529, 2016.

[26] X. Yu and N. T. Vu, “Character composition model with convolutional neu-
ral networks for dependency parsing on morphologically rich languages,”
arXiv preprint arXiv:1705.10814, 2017.

112

[27] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-
gies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[28] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based encoding for evolving
large-scale neural networks,” Artificial life, vol. 15, no. 2, pp. 185–212, 2009.

[29] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg, M. Lanctot, and
D. Wierstra, “Convolution by evolution: Differentiable pattern producing networks,” in
Proceedings of the Genetic and Evolutionary Computation Conference 2016, ACM, 2016,
pp. 109–116.

[30] R Miikkulainen, J Liang, E Meyerson, A Rawal, D Fink, O Francon, B Raju, H
Shahrzad, A Navruzyan, N Duffy, et al., “Evolving deep neural networks (2017),”
arXiv preprint arXiv:1703.00548, 2017.

[31] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[32] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[33] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[34] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in
Proceedings of the 12th ACM SIGKDD, ACM, 2006, pp. 535–541.

[35] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and
D. Wierstra, “Pathnet: Evolution channels gradient descent in super neural networks,”
arXiv preprint arXiv:1701.08734, 2017.

[36] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
“Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,”
arXiv preprint arXiv:1701.06538, 2017.

[37] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Understanding and sim-
plifying one-shot architecture search,” in International Conference on Machine Learning,
2018, pp. 549–558.

[38] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic
depth,” in European Conference on Computer Vision, Springer, 2016, pp. 646–661.

[39] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Training pruned neural networks,”
arXiv preprint arXiv:1803.03635, 2018.

113

[40] E. Meyerson and R. Miikkulainen, “Beyond shared hierarchies: Deep multitask learning
through soft layer ordering,” arXiv preprint arXiv:1711.00108, 2017.

[41] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: One-shot model architecture
search through hypernetworks,” arXiv preprint arXiv:1708.05344, 2017.

[42] J. Schmidhuber, “Evolutionary principles in self-referential learning, or on learning how
to learn: The meta-meta-... hook,” PhD thesis, Technische Universität München, 1987.

[43] J. Schmidhuber, J. Zhao, and N. N. Schraudolph, “Reinforcement learning with self-
modifying policies,” in Learning to learn, Springer, 1998, pp. 293–309.

[44] J Schmidhuber, “An’introspective’network that can learn to run its own weight change
algorithm,” in 1993 Third International Conference on Artificial Neural Networks, IET,
1993, pp. 191–194.

[45] Y. Bengio, S. Bengio, and J. Cloutier, Learning a synaptic learning rule. Citeseer, 1990.

[46] S. Bengio, Y. Bengio, and J. Cloutier, “On the search for new learning rules for anns,”
Neural Processing Letters, vol. 2, no. 4, pp. 26–30, 1995.

[47] S. Thrun and L. Pratt, “Learning to learn: Introduction and overview,” in Learning to learn,
Springer, 1998, pp. 3–17.

[48] J. Kaiser, “Richard hamming-you and your research,” in Simula Research Laboratory,
Springer, 2010, pp. 37–60.

[49] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, “Neural net-
works designing neural networks: Multi-objective hyper-parameter optimization,” in
Computer-Aided Design (ICCAD), 2016 IEEE/ACM International Conference on, IEEE,
2016, pp. 1–8.

[50] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy,
“Progressive neural architecture search,” arXiv preprint arXiv:1712.00559, 2017.

[51] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architecture search
via parameter sharing,” arXiv preprint arXiv:1802.03268, 2018.

[52] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”
arXiv preprint arXiv:1806.09055, 2018.

[53] Y. He and S. Han, “Adc: Automated deep compression and acceleration with reinforcement
learning,” arXiv preprint arXiv:1802.03494, 2018.

114

[54] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,”
arXiv preprint arXiv:1808.05377, 2018.

[55] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint arXiv:1609.09106, 2016.

[56] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, T. K.-T. Cheng, and J. Sun, “Metapruning: Meta
learning for automatic neural network channel pruning,” arXiv preprint arXiv:1903.10258,
2019.

[57] C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for neural architecture search,”
arXiv preprint arXiv:1810.05749, 2018.

[58] D. Krueger, C.-W. Huang, R. Islam, R. Turner, A. Lacoste, and A. Courville, “Bayesian
hypernetworks,” arXiv preprint arXiv:1710.04759, 2017.

[59] K. Ukai, T. Matsubara, and K. Uehara, “Hypernetwork-based implicit posterior estimation
and model averaging of cnn,” in Asian Conference on Machine Learning, 2018, pp. 176–
191.

[60] N. Pawlowski, A. Brock, M. C. Lee, M. Rajchl, and B. Glocker, “Implicit weight uncer-
tainty in neural networks,” arXiv preprint arXiv:1711.01297, 2017.

[61] C. Henning, J. von Oswald, J. Sacramento, S. C. Surace, J.-P. Pfister, and B. F. Grewe,
“Approximating the predictive distribution via adversarially-trained hypernetworks,” in
Bayesian Deep Learning Workshop, NeurIPS (Spotlight), vol. 2018, 2018.

[62] L. Deutsch, E. Nijkamp, and Y. Yang, “A generative model for sampling high-performance
and diverse weights for neural networks,” arXiv preprint arXiv:1905.02898, 2019.

[63] Z. Pan, Y. Liang, J. Zhang, X. Yi, Y. Yu, and Y. Zheng, “Hyperst-net: Hypernetworks for
spatio-temporal forecasting,” arXiv preprint arXiv:1809.10889, 2018.

[64] F. Shen, S. Yan, and G. Zeng, “Meta networks for neural style transfer,”
arXiv preprint arXiv:1709.04111, 2017.

[65] S. Klocek, Ł. Maziarka, M. Wołczyk, J. Tabor, M. Śmieja, and J. Nowak, “Hypernetwork
functional image representation,” arXiv preprint arXiv:1902.10404, 2019.

[66] J. Serrà, S. Pascual, and C. Segura, “Blow: A single-scale hyperconditioned flow for non-
parallel raw-audio voice conversion,” arXiv preprint arXiv:1906.00794, 2019.

[67] E. Meyerson and R. Miikkulainen, “Modular universal reparameterization: Deep multi-
task learning across diverse domains,” arXiv preprint arXiv:1906.00097, 2019.

115

[68] J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe, “Continual learning with
hypernetworks,” arXiv preprint arXiv:1906.00695, 2019.

[69] J. Suarez, “Language modeling with recurrent highway hypernetworks,” in
Advances in neural information processing systems, 2017, pp. 3267–3276.

[70] N. Ratzlaff and L. Fuxin, “Hypergan: A generative model for diverse, performant neural
networks,” arXiv preprint arXiv:1901.11058, 2019.

[71] A. Kristiadi and A. Fischer, “Predictive uncertainty quantification with compound density
networks,” arXiv preprint arXiv:1902.01080, 2019.

[72] J. Lorraine and D. Duvenaud, “Stochastic hyperparameter optimization through hypernet-
works,” arXiv preprint arXiv:1802.09419, 2018.

[73] Z. Sun, M. Ozay, and T. Okatani, “Hypernetworks with statistical filtering for defending
adversarial examples,” arXiv preprint arXiv:1711.01791, 2017.

[74] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shilling-
ford, and N. De Freitas, “Learning to learn by gradient descent by gradient descent,” in
Advances in Neural Information Processing Systems, 2016, pp. 3981–3989.

[75] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in
International Conference on Learning Representations, 2018.

[76] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: A self-gated activation function,”
arXiv preprint arXiv:1710.05941, 2017.

[77] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[78] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of
deep networks,” arXiv preprint arXiv:1703.03400, 2017.

[79] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming catastrophic forgetting
in neural networks,” Proceedings of the national academy of sciences, vol. 114, no. 13,
pp. 3521–3526, 2017.

[80] T. Gabor, S. Illium, A. Mattausch, L. Belzner, and C. Linnhoff-Popien, “Self-replication
in neural networks,” in Artificial Life Conference Proceedings, MIT Press, 2019, pp. 424–
431.

116

[81] X. Glorot and Y. Bengio, “Understanding the diffi-
culty of training deep feedforward neural networks,” in
Proceedings of the thirteenth international conference on artificial intelligence and statistics,
2010, pp. 249–256.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–
1034.

[83] P.-W. Wang, P. L. Donti, B. Wilder, and Z. Kolter, “Satnet: Bridging deep learning and logi-
cal reasoning using a differentiable satisfiability solver,” arXiv preprint arXiv:1905.12149,
2019.

[84] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear Phenomena, vol. 42,
no. 1-3, pp. 335–346, 1990.

[85] J. Von Neumann and A. W. Burks, “Theory of self-reproducing automata,” in, Urbana:
University of Illinois Press, 1966, p. 8.

[86] D. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid. New York: Vintage Books,
1980.

[87] W. contributors, Quine (computing) — wikipedia, the free encyclopedia, [Online; ac-
cessed 5-February-2018], 2018.

[88] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,” 1998.

[89] N. Drake, “Why male dark fishing spiders die spontaneously after sex,” Wired, 2013.

[90] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with deep regres-
sion networks,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M.
Welling, Eds., Cham: Springer International Publishing, 2016, pp. 749–765, ISBN: 978-3-
319-46448-0.

[91] Gulshan, Varun and Peng, Lily and Coram, Marc and Stumpe, Martin C. and Wu, Derek
and Narayanaswamy, Arunachalam and Venugopalan, Subhashini and Widner, Kasumi
and Madams, Tom and Cuadros, Jorge, and Kim, Ramasamy and Raman, Rajiv and Nel-
son, Philip C. and Mega, Jessica L. and Webster, Dale R., “Development and validation
of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus pho-
tographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.

[92] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,”
arXiv preprint arXiv:1609.03499, 2016.

117

[93] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Küttler, J. Agapiou, J. Schrittwieser, et al., “Starcraft ii: A new challenge for reinforce-
ment learning,” arXiv preprint arXiv:1708.04782, 2017.

[94] M. Marshall, “First life: The search for the first replicator,” New Scientist, vol. Issue 2825,
2011.

[95] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new per-
spectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

[96] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson, “Robotics: Self-reproducing ma-
chines,” Nature, vol. 435, pp. 163–164, 2005.

[97] G. P. Thompson. (1999). The quine page, (visited on 03/07/2018).

[98] Y. Endoh. (2017). Quine relay, (visited on 03/07/2018).

[99] T. Wang, R. Sha, R. Dreyfus, M. E. Leunissen, C. Maass, D. J. Pine, P. M. Chaikin,
and N. C. Seeman, “Self-replication of information-bearing nanoscale patterns,” Nature,
vol. 478, no. 7368, p. 225, 2011.

[100] J. Breivik, “Self-organization of template-replicating polymers and the spontaneous rise of
genetic information,” Entropy, vol. 3, no. 4, pp. 273–279, 2001.

[101] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al., “Predicting parameters in deep learn-
ing,” in Advances in neural information processing systems, 2013, pp. 2148–2156.

[102] J. Schmidhuber, “Learning to control fast-weight memories: An alternative to dynamic
recurrent networks,” Neural Computation, vol. 4, no. 1, pp. 131–139, 1992.

[103] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,”
International Conference on Learning Representations, 2017.

[104] J. Schmidhuber, “A ‘self-referential’weight matrix,” in ICANN’93, Springer, 1993,
pp. 446–450.

[105] A. Radford, L. Metz, and S. Chintala, “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks,”
International Conference on Learning Representations, 2016.

[106] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wier-
stra, “Draw: A recurrent neural network for image generation,”
Proceedings of the 32nd International Conference on Machine Learning, 2015.

118

[107] K. O. Stanley, D. D’Ambrosio, and J. Gauci, “A hypercube-based indirect encoding for
evolving large-scale neural networks,” Artificial Life, vol. 15(2), pp. 185–212, 2009.

[108] W. contributors, Self-replication — wikipedia, the free encyclopedia, [Online; accessed 5-
March-2018], 2017.

[109] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert
space,” Contemporary mathematics, vol. 26, no. 189-206, p. 1, 1984.

[110] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in
Advances in neural information processing systems, 2008, pp. 1177–1184.

[111] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and appli-
cations,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

[112] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural net-
works,” in Advances in Neural Information Processing Systems, 2017, pp. 972–981.

[113] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks
for reinforcement learning,” arXiv preprint arXiv:1712.06567, 2017.

[114] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies as a scalable alternative
to reinforcement learning,” arXiv preprint arXiv:1703.03864, 2017.

[115] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[116] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-
ing and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

[117] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude,” COURSERA: Neural networks for machine learning, vol. 4,
no. 2, pp. 26–31, 2012.

[118] B. Adams and H. Lipson, “A universal framework for analysis of self-replication phenom-
ena,” Entropy, vol. 11, pp. 295–325, 2009.

[119] L. S. Penrose, “Self-reproducing machines,” Scientific American, vol. 200, pp. 105–112,
1959.

[120] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
arXiv preprint arXiv:1602.01783, 2016.

119

[121] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation,” in
Advances in neural information processing systems, 2016, pp. 3675–3683.

[122] Q. Zhang and S.-C. Zhu, “Visual interpretability for deep learning: A survey,”
arXiv preprint arXiv:1802.00614, 2018.

[123] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M.
Srivastava, A. Preece, S. Julier, R. M. Rao, et al., “Interpretability of deep learning models:
A survey of results,” in IEEE Smart World Congress 2017 Workshop: DAIS, 2017.

[124] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[125] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic reg-
ularities in continuous space word representations,” in
Proceedings of the 2013 Conference of the Association for Computational Linguistics,
2013, pp. 746–751.

[126] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representa-
tion,” in Proceedings of the 2014 EMNLP, 2014, pp. 1532–1543.

[127] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft, “Convergent
learning: Do different neural networks learn the same representations?” In
Feature Extraction: Modern Questions and Challenges, 2015, pp. 196–212.

[128] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Programmatically inter-
pretable reinforcement learning,” arXiv preprint arXiv:1804.02477, 2018.

[129] C. Dann, L. Li, W. Wei, and E. Brunskill, “Policy certificates: Towards accountable rein-
forcement learning,” arXiv preprint arXiv:1811.03056, 2018.

[130] Y. Zha, Y. Li, S. Gopalakrishnan, B. Li, and S. Kambhampati, “Recognizing plans by learn-
ing embeddings from observed action distributions,” in Proceedings of the 17th AAMAS,
International Foundation for Autonomous Agents and Multiagent Systems, 2018,
pp. 2153–2155.

[131] D. Ashlock and C. Lee, “Agent-case embeddings for the analysis of evolved systems.,”

[132] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,”
arXiv preprint arXiv:1609.03499, 2016.

120

[133] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynamics,” in
Advances In Neural Information Processing Systems, 2016, pp. 613–621.

[134] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language
model,” Journal of machine learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[135] T. Xiao, J. Hong, and J. Ma, “Dna-gan: Learning disentangled representations from multi-
attribute images,” arXiv preprint arXiv:1711.05415, 2017.

[136] O. Chang and H. Lipson, “Neural network quine,” Artificial life, vol. 30, pp. 234–241,
2018.

[137] C. M. Bishop, “Bayesian neural networks,” Journal of the Brazilian Computer Society,
vol. 4, no. 1, 1997.

[138] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[139] C. Louizos and M. Welling, “Multiplicative normalizing flows for variational bayesian
neural networks,” arXiv preprint arXiv:1703.01961, 2017.

[140] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adap-
tive elements that can solve difficult learning control problems,”
IEEE transactions on systems, man, and cybernetics, vol. SMC-13, no. 5, pp. 834–
846, 1983.

[141] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[142] C. Li, H. Farkhoor, R. Liu, and J. Yosinski, “Measuring the intrinsic dimension of objective
landscapes,” arXiv preprint arXiv:1804.08838, 2018.

[143] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning
by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[144] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[145] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep condi-
tional generative models,” in Advances in Neural Information Processing Systems, 2015,
pp. 3483–3491.

[146] J. E. Hopcroft and R. M. Karp, “An n5̂/2 algorithm for maximum matchings in bipartite
graphs,” SIAM Journal on computing, vol. 2, no. 4, pp. 225–231, 1973.

121

[147] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,” in
Advances in Neural Information Processing Systems, 2017, pp. 4148–4158.

[148] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” in
International Conference on Learning Representations, 2018.

[149] D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning representations by back-
propagating errors,” NATURE, vol. 323, p. 9, 1986.

[150] H. Zhang, Y. N. Dauphin, and T. Ma, “Fixup initialization: Residual learning without nor-
malization,” arXiv preprint arXiv:1901.09321, 2019.

[151] S. Laue, M. Mitterreiter, and J. Giesen, “Computing higher order derivatives of matrix
and tensor expressions,” in Advances in Neural Information Processing Systems, 2018,
pp. 2755–2764.

[152] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120, 2013.

[153] I. Balazevic, C. Allen, and T. M. Hospedales, “Hypernetwork knowledge graph embed-
dings,” arXiv preprint arXiv:1808.07018, 2018.

[154] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity:
The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[155] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision ap-
plications,” arXiv preprint arXiv:1704.04861, 2017.

[156] Y. Wu and K. He, “Group normalization,” in Proceedings of ECCV, 2018, pp. 3–19.

[157] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[158] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep
networks,” in Advances in neural information processing systems, 2007, pp. 153–160.

[159] J. Koutnik, F. Gomez, and J. Schmidhuber, “Evolv-
ing neural networks in compressed weight space,” in
Proceedings of the 12th annual conference on Genetic and evolutionary computation,
ACM, 2010, pp. 619–626.

122

[160] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[161] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[162] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y.
Xiao, Z. Chen, S. Bengio, et al., “Tacotron: Towards end-to-end speech synthesis,”
arXiv preprint arXiv:1703.10135, 2017.

[163] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek,
A. W. Nelson, A. Bridgland, et al., “Improved protein structure prediction using potentials
from deep learning,” Nature, pp. 1–5, 2020.

[164] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67–82, 1997.

[165] J. Clune, “Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general
artificial intelligence,” arXiv preprint arXiv:1905.10985, 2019.

[166] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv preprint arXiv:1410.5401, 2014.

[167] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with
memory-augmented neural networks,” in International conference on machine learning,
2016, pp. 1842–1850.

[168] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for one shot
learning,” in Advances in Neural Information Processing Systems, 2016, pp. 3630–3638.

[169] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in
Advances in neural information processing systems, 2017, pp. 4077–4087.

[170] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
and T. Lillicrap, “A simple neural network module for relational reasoning,” in
Advances in neural information processing systems, 2017, pp. 4967–4976.

[171] R. Caruana, “Learning many related tasks at the same time with backpropagation,” in
Advances in neural information processing systems, 1995, pp. 657–664.

[172] M. A. Jamal and G.-J. Qi, “Task agnostic meta-learning for few-shot learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 11 719–11 727.

123

[173] M. Khodak, M.-F. Balcan, and A. Talwalkar, “Provable guarantees for gradient-based
meta-learning,” arXiv preprint arXiv:1902.10644, 2019.

[174] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with implicit gradi-
ents,” in Advances in Neural Information Processing Systems, 2019, pp. 113–124.

[175] M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn, “Meta-learning without memoriza-
tion,” in International Conference on Learning Representations, 2020.

[176] S. Guiroy, V. Verma, and C. Pal, “Towards understanding generalization in gradient-based
meta-learning,” arXiv preprint arXiv:1907.07287, 2019.

[177] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[178] J. Baxter, “A bayesian/information theoretic model of learning to learn via multiple task
sampling,” Machine learning, vol. 28, no. 1, pp. 7–39, 1997.

[179] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly for few-shot
learning,” arXiv preprint arXiv:1707.09835, 2017.

[180] E. Park and J. B. Oliva, “Meta-curvature,” in Advances in NeurIPS, 2019, pp. 3309–3319.

[181] H. B. Lee, T. Nam, E. Yang, and S. J. Hwang, “Meta dropout: Learning to perturb la-
tent features for generalization,” in International Conference on Learning Representations,
2020.

[182] S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell, “Meta-learning
with warped gradient descent,” in International Conference on Learning Representations,
2020.

[183] A. Antoniou, H. Edwards, and A. Storkey, “How to train your maml,”
arXiv preprint arXiv:1810.09502, 2018.

[184] L. M. Zintgraf, K. Shiarlis, V. Kurin, K. Hofmann, and S. Whiteson, “Fast context adapta-
tion via meta-learning,” arXiv preprint arXiv:1810.03642, 2018.

[185] A. Antoniou and A. J. Storkey, “Learning to learn by self-critique,” in
Advances in Neural Information Processing Systems, 2019, pp. 9936–9946.

[186] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell,
“Meta-learning with latent embedding optimization,” arXiv preprint arXiv:1807.05960,
2018.

[187] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,”
arXiv preprint arXiv:1803.02999, 2018.

124

[188] H.-Y. Tseng, Y.-W. Chen, Y.-H. Tsai, S. Liu, Y.-Y. Lin, and M.-H. Yang,
Dropgrad: Gradient dropout regularization for meta-learning, 2020.

[189] Z. Kang, K. Grauman, and F. Sha, “Learning with whom to share in multi-task fea-
ture learning,” in Proceedings of the 28th International Conference on Machine Learning,
ser. ICML’11, Madison, WI, USA: Omnipress, 2011, 521–528, ISBN: 9781450306195.

[190] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

[191] H. B. Lee, E. Yang, and S. J. Hwang, “Deep asymmetric multi-task feature learning,”
arXiv preprint arXiv:1708.00260, 2017.

[192] S. Liu, Y. Liang, and A. Gitter, “Loss-balanced task weighting to reduce negative transfer
in multi-task learning,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 9977–9978.

[193] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm: Gra-
dient normalization for adaptive loss balancing in deep multitask networks,”
arXiv preprint arXiv:1711.02257, 2017.

[194] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7482–7491.

[195] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in
Advances in Neural Information Processing Systems, 2018, pp. 527–538.

[196] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al., “Hybrid computing using a
neural network with dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476,
2016.

[197] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[198] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD Birds-
200-2011 Dataset,” California Institute of Technology, Tech. Rep. CNS-TR-2011-001,
2011.

[199] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q. Cheng, G. Chen, et al., “Deep speech 2: End-to-end speech recognition
in english and mandarin,” in International conference on machine learning, 2016, pp. 173–
182.

125

[200] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go
with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[201] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo,
and C. Blundell, “Agent57: Outperforming the atari human benchmark,”
arXiv preprint arXiv:2003.13350, 2020.

[202] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return then explore,”
arXiv preprint arXiv:2004.12919, 2020.

[203] G. Marcus, “The next decade in ai: Four steps towards robust artificial intelligence,”
arXiv preprint arXiv:2002.06177, 2020.

[204] F. Chollet, “The measure of intelligence,” arXiv preprint arXiv:1911.01547, 2019.

[205] J. S. B. Evans, “Heuristic and analytic processes in reasoning,”
British Journal of Psychology, vol. 75, no. 4, pp. 451–468, 1984.

[206] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[207] Y. Bengio, From system 1 deep learning to system 2 deep learning, Conference on Neural
Information Processing Systems, 2019.

[208] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al., “Solving rubik’s cube with a robot hand,”
arXiv preprint arXiv:1910.07113, 2019.

[209] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing, “Harnessing deep neural networks with logic
rules,” arXiv preprint arXiv:1603.06318, 2016.

[210] T. Rocktäschel and S. Riedel, “End-to-end differentiable proving,” in
Advances in Neural Information Processing Systems, 2017, pp. 3788–3800.

[211] N. Cingillioglu and A. Russo, “Deeplogic: Towards end-to-end differentiable logical rea-
soning,” arXiv preprint arXiv:1805.07433, 2018.

[212] R. Evans and E. Grefenstette, “Learning explanatory rules from noisy data,”
Journal of Artificial Intelligence Research, vol. 61, pp. 1–64, 2018.

[213] L. Serafini and A. d. Garcez, “Logic tensor networks: Deep learning and logical reasoning
from data and knowledge,” arXiv preprint arXiv:1606.04422, 2016.

[214] G. Sourek, V. Aschenbrenner, F. Zelezny, and O. Kuzelka, “Lifted relational neural net-
works,” arXiv preprint arXiv:1508.05128, 2015.

126

[215] E. van Krieken, E. Acar, and F. van Harmelen, “Analyzing differentiable fuzzy logic oper-
ators,” arXiv preprint arXiv:2002.06100, 2020.

[216] M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolínek, “Differentiation of black-
box combinatorial solvers,” arXiv preprint arXiv:1912.02175, 2019.

[217] M. Rolínek, P. Swoboda, D. Zietlow, A. Paulus, V. Musil, and G. Martius,
“Deep graph matching via blackbox differentiation of combinatorial solvers,”
arXiv preprint arXiv:2003.11657, 2020.

[218] S. Tschiatschek, A. Sahin, and A. Krause, “Differentiable submodular maximization,”
arXiv preprint arXiv:1803.01785, 2018.

[219] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, “Fast differentiable sorting and rank-
ing,” arXiv preprint arXiv:2002.08871, 2020.

[220] B. Amos and J. Z. Kolter, “Optnet: Differentiable
optimization as a layer in neural networks,” in
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
JMLR. org, 2017, pp. 136–145.

[221] R. Palm, U. Paquet, and O. Winther, “Recurrent relational networks,” in
Advances in Neural Information Processing Systems, 2018, pp. 3368–3378.

[222] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill, “Learning a sat
solver from single-bit supervision,” arXiv preprint arXiv:1802.03685, 2018.

[223] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De
Raedt, “Deepproblog: Neural probabilistic logic programming,” in
Advances in Neural Information Processing Systems, 2018, pp. 3749–3759.

[224] F. Yang, Z. Yang, and W. W. Cohen, “Differentiable learning of logical rules for knowledge
base reasoning,” in Advances in Neural Information Processing Systems, 2017, pp. 2319–
2328.

[225] A. Cropper, S. Dumančić, and S. H. Muggleton, “Turning 30: New ideas in inductive logic
programming,” arXiv preprint arXiv:2002.11002, 2020.

[226] W. W. Cohen, “Tensorlog: A differentiable deductive database,”
arXiv preprint arXiv:1605.06523, 2016.

[227] C. Zhang, F. Gao, B. Jia, Y. Zhu, and S.-C. Zhu, “Raven:
A dataset for relational and analogical visual reasoning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 5317–5327.

127

[228] D. G. Barrett, F. Hill, A. Santoro, A. S. Morcos, and T. Lillicrap, “Measuring abstract
reasoning in neural networks,” arXiv preprint arXiv:1807.04225, 2018.

[229] S. Hu, Y. Ma, X. Liu, Y. Wei, and S. Bai, “Hierarchical rule induction network for abstract
visual reasoning,” arXiv preprint arXiv:2002.06838, 2020.

[230] P. Norvig, Solving every sudoku puzzle, http://norvig.com/sudoku.html,
2006.

[231] K. Park, Can convolutional neural networks crack sudoku puzzles? https://github.
com/Kyubyong/sudoku, 2018.

[232] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to doc-
ument recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[233] V. Arvind and N. Vinodchandran, “The complexity of exactly learning algebraic concepts,”
in International Workshop on Algorithmic Learning Theory, Springer, 1996, pp. 100–112.

[234] T. Deleu, T. Würfl, M. Samiei, J. P. Cohen, and Y. Ben-
gio, Torchmeta: A Meta-Learning library for PyTorch, Available at:
https://github.com/tristandeleu/pytorch-meta, 2019.

[235] user265554 (https://puzzling.stackexchange.com/users/16477/user265554),
Complete the sequence, Puzzling Stack Exchange, URL:https://puzzling.stackexchange.com/questions/22495/complete-
the-sequence (version: 2020-05-08), 2015. eprint: https : / / puzzling .
stackexchange.com/questions/22495/complete-the-sequence.

128

http://norvig.com/sudoku.html
https://github.com/Kyubyong/sudoku
https://github.com/Kyubyong/sudoku
https://puzzling.stackexchange.com/questions/22495/complete-the-sequence
https://puzzling.stackexchange.com/questions/22495/complete-the-sequence

Appendix A: Supplementary Information for Chapter 4

A.1 Re-using Hypernet Weights

A.1.1 For Mainnet Weights of the Same Size

For model compression or weight-sharing purposes, different parts of the mainnet might be

generated by the same hypernet function. This will cause some assumptions of independence in our

analysis to be invalid. Consider the example of the same hypernet being used to generate multiple

different mainnet weight layers of the same size, i.e. � [C]8C+1
8C :

= � [C + 1]8C+2
8C+1:

, d8C+1 = d8C+2 = d8C .

Then, G [C + 1]8C+1 = � [C]8C+1
8C :C
4[C]:CG [C]8C 6⊥⊥ , [C + 1]8C+2

8C+1
= � [C + 1]8C+2

8C+1:
4[C + 1]:C+1 .

The relaxation of some of these independence assumptions does not always prove to be a big

problem in practice, because the correlations introduced by repeated use of � can be minimized

with the use of flat distributions like the uniform distribution. It can even be helpful, since the re-use

of the same hypernet for different layers causes the gradient flowing through the hypernet output

layer to be the sum of the gradients from the weights of these layers: m!

mℎ(4): =
∑
C

m!

m, [C]8C+1
8C

�
8C+1
8C :

,

thus combating the shrinking effect.

A.1.2 For Mainnet Weights of Different Sizes

Similar reasoning applies if the same hypernet was used to generate differently sized subsets of

weights in the mainnet. However, we encourage avoiding this kind of hypernet architecture design

if not otherwise essential, since it will complicate the initialization formulae listed in Table 4.1.

Consider [55]’s hypernetwork architecture. Their two-layer hypernet generated weight chunks

of size (, =, =) for a main convolutional network where = 16 was found to be the highest

common factor among the size of mainnet layers, and =2 = 9 was the size of the receptive field.

129

We simplify the presentation by writing 8 for 8C , 9 for 9C , : for :C,<, and ; for ;C,<.

, [C]89 =


�
8(mod)
:

U[C] [9 + b 8

cd 9]: + V8(mod) if 8 is divisible by

X 9 (mod) 9 (mod)
[
�
9 (mod)
:

U[C] [8 + b 9

cd8]: + V 9 (mod)] if 9 is divisible by

U[C] [<C]: = � [C] [<C]:; 4[C] [<C]
; + W [C] [<C]:

(A.1)

Because the output layer (�, V) in the hypernet was re-used to generate mainnet weight matrices

of different sizes (i.e. in general, 8C ≠ 8C+1, 9C ≠ 9C+1), � effectively becomes the output layer that

we want to be considering for hyperfan-in and hyperfan-out initialization.

Hence, to achieve fan-in in the mainnet Var(, [C]8
9
) = 1

d 9
, we have to use fan-in init for �

(i.e. Var(�8(mod)
:

) = 1
d:
≠ 1

d 9d:Var(4[C] [<C];)
), and hyperfan-in init for � (i.e. Var(� [C] [<C]:;) =

1
d 9d;Var(4[C] [<C];)

).

Analogously, to achieve fan-out in the mainnet Var(, [C]8
9
) = 1

d8
, we have to use fan-in init for

� (i.e. Var(�8(mod)
:

) = 1
d:
≠ 1

d8d:Var(4[C] [<C];)
), and hyperfan-out init for � (i.e. Var(� [C] [<C]:;) =

1
d8d;Var(4[C] [<C];)

).

130

A.2 More Experimental Details

A.2.1 Feedforward Networks on MNIST

The networks were trained on MNIST for 30 epochs with batch size 10 using a learning rate

of 0.0005 for the hypernets and 0.01 for the classical network. The hypernets had one linear

layer with embeddings of size 50 and different hidden layers in the mainnet were all generated by

the same hypernet output layer with a different embedding, which was randomly sampled from

U(−
√

3,
√

3) and fixed. We use the mean cross entropy loss for training, but the summed cross

entropy loss for testing.

We show activation and gradient plots for two cases: (i) the hypernet generates only the weights

of the mainnet, and (ii) the hypernet generates both the weights and biases of the mainnet. (i) covers

Figures 4.3, 4.1, A.1, A.2, A.3, A.4, A.5, A.6, 4.2, A.7, A.8, A.9, and A.10. (ii) covers Figures

A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20, A.21, A.22, and A.23.

The activations and gradients in our plots were calculated by averaging across a fixed held-out

set of 300 examples drawn randomly from the test set.

In Figures 4.1, A.2, A.3, A.5, A.6, A.7, A.8, A.10, A.12, A.14, A.15, A.17, A.18, A.20, A.21,

and A.23, the y axis shows the number of activations/gradients, while the x axis shows the value

of the activations/gradients. The value of activations/gradients from the hypernet output layer

correspond to the value of mainnet weights.

In Figures 4.2, A.1, A.4, A.9, A.13, A.16, A.19, and A.22, the y axis shows the mean value

of the activations/gradients, while each increment on the x axis corresponds to a measurement that

was taken every 1000 training batches, with the bars denoting one standard deviation away from

the mean.

131

Hypernet Generates Only the Mainnet Weights

0 25 50 75 100 125 150 175
1k Iterations

0.4

0.2

0.0

0.2

0.4

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Xavier (NN)

layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Xavier (Hyper)

layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.1: Evolution of Mainnet Activations during Training on MNIST.

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Activation Value

0

5

10

15

20

25

Nu
m

be
r o

f A
ct

iv
at

io
ns

Xavier (NN)
layer one
layer two
layer three
layer four
layer five

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

10

20

30

40

50

60

Nu
m

be
r o

f A
ct

iv
at

io
ns

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Activation Value

0

5

10

15

20

25

30

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.2: Mainnet Activations at the End of Training on MNIST.

4 2 0 2 4
Gradient Value 1e 5

0

10

20

30

40

50

60

Nu
m

be
r o

f G
ra

di
en

ts

Xavier (NN)
layer one
layer two
layer three
layer four
layer five

6 4 2 0 2 4 6
Gradient Value 1e 5

0

10

20

30

40

50

60

70

Nu
m

be
r o

f G
ra

di
en

ts

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

3 2 1 0 1 2 3
Gradient Value 1e 5

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

4 3 2 1 0 1 2 3 4
Gradient Value 1e 5

0

5

10

15

20

25

30

35

Nu
m

be
r o

f G
ra

di
en

ts
Hyperfan-out

layer one
layer two
layer three
layer four
layer five

Figure A.3: Mainnet Gradients before the Start of Training on MNIST.

132

0 25 50 75 100 125 150 175
1k Iterations

2

1

0

1

2

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Xavier (NN)
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

3

2

1

0

1

2

3

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Xavier (Hyper)

layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

1.5

1.0

0.5

0.0

0.5

1.0

1.5

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Hyperfan-in

layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

8

6

4

2

0

2

4

6

8

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 4 Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.4: Evolution of Mainnet Gradients during Training on MNIST.

4 2 0 2 4
Gradient Value 1e 5

0

10

20

30

40

50

60

Nu
m

be
r o

f G
ra

di
en

ts

Xavier (NN)
layer one
layer two
layer three
layer four
layer five

6 4 2 0 2 4 6
Gradient Value 1e 5

0

10

20

30

40

50

60

70

Nu
m

be
r o

f G
ra

di
en

ts

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

3 2 1 0 1 2 3
Gradient Value 1e 5

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

4 3 2 1 0 1 2 3 4
Gradient Value 1e 5

0

5

10

15

20

25

30

35

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.5: Mainnet Gradients at the End of Training on MNIST.

0.075 0.050 0.025 0.000 0.025 0.050 0.075
Activation Value

0

2

4

6

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Xavier (Hyper)
layer one
layer two
layer three
layer four

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Activation Value

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Hyperfan-in
layer one
layer two
layer three
layer four

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Activation Value

0

1

2

3

4

5

6

7

8
Nu

m
be

r o
f A

ct
iv

at
io

ns
1e3 Hyperfan-out

layer one
layer two
layer three
layer four

Figure A.6: Hypernet Output Layer Activations before the Start of Training on MNIST.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Activation Value

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e4 Xavier (Hyper)
layer one
layer two
layer three
layer four

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Activation Value

0

2

4

6

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Hyperfan-in
layer one
layer two
layer three
layer four

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Activation Value

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.7: Hypernet Output Layer Activations at the End of Training on MNIST.

133

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Gradient Value 1e 2

0

1

2

3

4

5

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Xavier (Hyper)
layer one
layer two
layer three
layer four

6 4 2 0 2 4 6
Gradient Value 1e 3

0

1

2

3

4

5

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-in
layer one
layer two
layer three
layer four

6 4 2 0 2 4 6
Gradient Value 1e 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.8: Hypernet Output Layer Gradients before the Start of Training on MNIST.

0 25 50 75 100 125 150 175
1k Iterations

4

2

0

2

4

6

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 6 Xavier (Hyper)
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

4

2

0

2

4

6

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 6 Hyperfan-in
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

2

1

0

1

2

3

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.9: Evolution of Hypernet Output Layer Gradients during Training on MNIST.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Gradient Value 1e 2

0

1

2

3

4

5

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Xavier (Hyper)
layer one
layer two
layer three
layer four

6 4 2 0 2 4 6
Gradient Value 1e 3

0

1

2

3

4

5

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-in
layer one
layer two
layer three
layer four

6 4 2 0 2 4 6
Gradient Value 1e 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.10: Hypernet Output Layer Gradients at the End of Training on MNIST.

134

Hypernet Generates Both Mainnet Weights and Biases

0 5 10 15 20 25 30
Epochs

0.00

0.01

0.02

0.03

0.04

Training Loss
Xavier (Hyper)
Hyperfan-in
Hyperfan-out

0 5 10 15 20 25 30
Epochs

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Test Loss
Xavier (Hyper)
Hyperfan-in
Hyperfan-out

0 5 10 15 20 25 30
Epochs

93

94

95

96

97

98

Test Accuracy

Xavier (Hyper)
Hyperfan-in
Hyperfan-out

Figure A.11: Loss and Test Accuracy Plots on MNIST.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f A
ct

iv
at

io
ns

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

2

4

6

8

10

12

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Activation Value

0

5

10

15

20

25

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.12: Mainnet Activations before the Start of Training on MNIST.

135

0 25 50 75 100 125 150 175
1k Iterations

0.4

0.2

0.0

0.2

0.4

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

0.6

0.4

0.2

0.0

0.2

0.4

0.6

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

Hyperfan-out

layer one
layer two
layer three
layer four
layer five

Figure A.13: Evolution of Mainnet Activations during Training on MNIST.

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Activation Value

0

10

20

30

40

50

Nu
m

be
r o

f A
ct

iv
at

io
ns

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

5

10

15

20

25

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation Value

0

10

20

30

40

50

Nu
m

be
r o

f A
ct

iv
at

io
ns

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.14: Mainnet Activations at the End of Training on MNIST.

4 2 0 2 4
Gradient Value 1e 5

0

10

20

30

40

50

60

Nu
m

be
r o

f G
ra

di
en

ts

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

4 2 0 2 4
Gradient Value 1e 5

0

20

40

60

80

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

3 2 1 0 1 2 3
Gradient Value 1e 5

0

5

10

15

20

25

30

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.15: Mainnet Gradients before the Start of Training on MNIST.

136

0 25 50 75 100 125 150 175
1k Iterations

1.5

1.0

0.5

0.0

0.5

1.0

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 4 Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

3

2

1

0

1

2

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Hyperfan-in
layer one
layer two
layer three
layer four
layer five

0 25 50 75 100 125 150 175
1k Iterations

3

2

1

0

1

2

3

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 4 Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.16: Evolution of Mainnet Gradients during Training on MNIST.

4 2 0 2 4
Gradient Value 1e 5

0

10

20

30

40

50

60

Nu
m

be
r o

f G
ra

di
en

ts

Xavier (Hyper)
layer one
layer two
layer three
layer four
layer five

4 2 0 2 4
Gradient Value 1e 5

0

20

40

60

80

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-in
layer one
layer two
layer three
layer four
layer five

3 2 1 0 1 2 3
Gradient Value 1e 5

0

5

10

15

20

25

30

Nu
m

be
r o

f G
ra

di
en

ts

Hyperfan-out
layer one
layer two
layer three
layer four
layer five

Figure A.17: Mainnet Gradients at the End of Training on MNIST.

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
Activation Value

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Xavier (Hyper)
layer one
layer two
layer three
layer four

0.10 0.05 0.00 0.05 0.10
Activation Value

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Hyperfan-in
layer one
layer two
layer three
layer four

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Activation Value

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e3 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.18: Hypernet Output Layer Activations before the Start of Training on MNIST.

137

0 25 50 75 100 125 150 175
1k Iterations

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

1e 4 Xavier (Hyper)
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

0.5

0.0

0.5

1.0

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

1e 4 Hyperfan-in

layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M
ea

n
Ac

tiv
at

io
n

Va
lu

e

1e 4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.19: Evolution of Hypernet Output Layer Activations during Training on MNIST.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Activation Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e4 Xavier (Hyper)
layer one
layer two
layer three
layer four

0.2 0.1 0.0 0.1 0.2
Activation Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e4 Hyperfan-in
layer one
layer two
layer three
layer four

0.2 0.1 0.0 0.1 0.2
Activation Value

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f A
ct

iv
at

io
ns

1e4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.20: Hypernet Output Layer Activations at the End of Training on MNIST.

8 6 4 2 0 2 4 6 8
Gradient Value 1e 3

0

1

2

3

4

5

6

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Xavier (Hyper)
layer one
layer two
layer three
layer four

6 4 2 0 2 4 6
Gradient Value 1e 3

0

1

2

3

4

5

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-in
layer one
layer two
layer three
layer four

8 6 4 2 0 2 4 6 8
Gradient Value 1e 3

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.21: Hypernet Output Layer Gradients before the Start of Training on MNIST.

138

0 25 50 75 100 125 150 175
1k Iterations

0

1

2

3

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Xavier (Hyper)
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

2

0

2

4

6

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 6 Hyperfan-in
layer one
layer two
layer three
layer four

0 25 50 75 100 125 150 175
1k Iterations

3

2

1

0

1

M
ea

n
Gr

ad
ie

nt
 V

al
ue

1e 5 Hyperfan-out

layer one
layer two
layer three
layer four

Figure A.22: Evolution of Hypernet Output Layer Gradients during Training on MNIST.

8 6 4 2 0 2 4 6 8
Gradient Value 1e 3

0

1

2

3

4

5

6

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Xavier (Hyper)
layer one
layer two
layer three
layer four

6 4 2 0 2 4 6
Gradient Value 1e 3

0

1

2

3

4

5

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-in
layer one
layer two
layer three
layer four

8 6 4 2 0 2 4 6 8
Gradient Value 1e 3

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f G
ra

di
en

ts

1e4 Hyperfan-out
layer one
layer two
layer three
layer four

Figure A.23: Hypernet Output Layer Gradients at the End of Training on MNIST.

139

Remark on the Combination of Fan-in and Fan-out Init

[81] proposed to use the harmonic mean of the two different initialization formulae derived

from the forward and backward pass. [82] commented that either version suffices for conver-

gence, and that it does not really matter given that the difference between the two will be a depth-

independent factor.

We experimented with the harmonic, geometric, and arithmetic means of the two different

formulae in both the classical and the hypernet case. There was no indication of any significant

benefit from taking any of the three different means in both cases. Thus, we confirm and concur

with [82]’s original observation that either the fan-in or the fan-out version suffices.

A.2.2 Continual Learning on Regression Tasks

The mainnet is a feedforward network with two hidden layers (10 hidden units) and the ReLU

activation function. The weights and biases of the mainnet are generated from a hypernet with two

hidden layers (10 hidden units) and trainable embeddings of size 2 sampled fromU(−
√

3,
√

3). We

keep the same continual learning hyperparameter V>DC?DC value of 0.005 and pick the best learning

rate for each initialization method from {10−2, 10−3, 10−4, 10−5}. Notably, Kaiming (fan-in) could

only be trained from learning rate 10−5, with losses diverging soon after initialization using the

other learning rates. Each task was trained for 6000 training iterations using batch size 32, with

Figure 4.4 plotted from losses measured at every 100 iterations.

A.2.3 Convolutional Networks on CIFAR-10

The networks were trained on CIFAR-10 for 500 epochs starting with an initial learning rate

of 0.0005 using batch size 100, and decaying with W = 0.1 at epochs 350 and 450. The hypernet

is composed of two layers (50 hidden units) with separate embeddings and separate input layers

but shared output layers. The weight generation happens in blocks of (96, 3, 3) where = 96 is

the highest common factor between the different sizes of the convolutional layers in the mainnet

and = = 3 is the size of the convolutional filters (see Appendix Section A.1.2 for a more detailed

140

explanation on the hypernet architecture). The embeddings are size 50 and fixed after random

sampling from U(−
√

3,
√

3). We use the mean cross entropy loss for training, but the summed

cross entropy loss for testing.

A.2.4 Bayesian Neural Network on ImageNet

[59] showed that a Bayesian neural network can be developed by using a hypernetwork to ex-

press a prior distribution without substantial changes to the vanilla hypernetwork setting. Their

methods simply require putting L2-regularization on the model parameters and sampling from

stochastic embeddings. We trained a linear hypernet to generate the weights of a MobileNet main-

net architecture (excluding the batch normalization layers), using the block-wise sampling strategy

described in [59], with a factor of 0.0005 for the L2-regularization. We initialize fixed embed-

dings of size 32 sampled from U(−
√

3,
√

3), and sample additive stochastic noise coming from

U(−0.1, 0.1) at the beginning of every mini-batch training. The training was done on ImageNet

with batch size 256 and learning rate 0.1 for 25 epochs, or equivalently, 125125 iterations. The

testing was done with 10 Monte Carlo samples. We omit the test loss plots due to the computational

expense of doing 10 forward passes after every mini-batch instead of every epoch.

141

Appendix B: Supplementary Information for Chapter 6

B.1 More Experimental Details

B.1.1 Loading the CUB and MiniImagenet Data

We use [234]’s Torchmeta dataloader implementation to load the CUB and MiniImagenet

datasets for the MAML and Meta-SGD experiments. For the MAML++ experiments, we use

[183]’s dataloader implementation.

We use 15 test examples within each task and 600 evaluation tasks for meta-validation and

meta-testing. Following common practice, every image is resized to 84 by 84 before being inputted

into the model.

B.1.2 Model Backbone

The model used in our experiments is a standard 4-layer convolutional neural network back-

bone that is commonly used in the meta-learning literature. We rely on [183]’s implementation,

which has 48 filters, batch normalization and ReLU activations for each convolutional layer, as

well as a max pooling and linear layer before the final softmax. The appropriate flags are set such

that the standard MAML backbone is used for the MAML and Meta-SGD experiments, while the

version with Per Step Batch Normalization is used for MAML++.

B.1.3 Meta-Training

In addition to the pseudo-code provided in Algorithms 4 and 5, we also attach example Py-

Torch code in the Supplementary materials demonstrating an implementation of gradient sharing

on MAML and Meta-SGD. We adapt [183]’s meta-training implementation accordingly to enable

gradient sharing for MAML++.

142

https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
 https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch/blob/master/meta_neural_network_architectures.py
https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch

B.2 More Plots

B.2.1 Meta-Validation Plots

We document meta-validation accuracy plots for the CUB dataset in Figure B.1 and the Mini-

Imagenet dataset in Figure B.3. Respective plots but for the versions with 10x higher inner loop

learning rates can be found in Figures B.5 and B.7. It can be quickly seen that in all plots except

one (third row third column in Figure B.7) gradient sharing accelerates meta-training compared to

the baseline. The acceleration effect is more pronounced in the 5-task setting and less so in the

1-task setting, which is not surprising because gradient sharing is a multi-task learning based inner

loop regularizer. The 1-task setting also occasionally results in a lower meta-validation accuracy

peak compared to the baseline. This prompts important future work into inner loop regularizers

that can strongly accelerate meta-learning while not sacrificing meta-test performance even in the

absence of other tasks in the task batch.

B.2.2 Meta-Test Accuracy

The legend in each of these meta-validation plots also indicates the maximum validation accu-

racy achieved, the meta-training epoch at which it was achieved, as well as the final meta-test ac-

curacy. We note that the meta-test accuracies established for the MAML and MAML++ baselines

generally reproduce or surpass what was reported in [78], [183], and [185], even though specific

hyperparameters might be slightly different. However, it seems that the baseline Meta-SGD meta-

test accuracy often falls short of that of MAML, which is contrary to what was reported in [179].

Like [179], we initialize all the entries of the vector learning rate " to the same value. While we

chose 0.1 for fair comparison to MAML and MAML++, they mentioned that they randomly chose

from [0.005, 0.1]. It is possible that a hyperparameter search will enable Meta-SGD to outper-

form MAML, but we note that the meta-validation graphs indicate declining performance beyond

a certain point, indicating the presence of task over-fitting. This happens more often than vanilla

MAML, which makes sense because there are more inner loop parameters that can be over-fit, and

143

thus, like our method, it would benefit from outer loop regularization.

B.2.3 Momentum m and Lambda , Variables

Plots for m and , are also documented in Figure B.2 for CUB and Figure B.4 for MiniImagenet,

respectively Figures B.6 and B.8 for the versions with 10x inner loop learning rate. If we compare

them side-by-side with the meta-validation plots, it is easy to confirm our observation in the main

chapter that exemplary outcomes of gradient sharing correspond to low meta-learned m and ,,

while pathological outcomes correspond to high meta-learned m and ,. In general, even for the

pathological experiments, we can use the meta-validation set to perform early stopping and pick

models that have yet to over-fit, so this is not a major issue.

144

0 20 40 60 80 100 120 140

0.3

0.4

0.5

0.6

1
Sh

ot
 5

 T
as

k

MAML

OG MaxVal 58.8% Ep 69, Test 68.2±1.8%
GS MaxVal 63.0% Ep 66, Test 68.2±1.8%

0 20 40 60 80 100 120 140

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Meta-SGD

OG MaxVal 51.8% Ep 58, Test 59.6±1.9%
GS MaxVal 50.4% Ep 25, Test 59.0±1.9%

0 20 40 60 80 100 120 140
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

MAML++

OG MaxVal 59.4% Ep 46, Test 61.2±1.9%
GS MaxVal 60.1% Ep 57, Test 61.7±1.9%

0 20 40 60 80 100 120 140

0.3

0.4

0.5

0.6

0.7

0.8

5
Sh

ot
 5

 T
as

k

OG MaxVal 76.5% Ep 121, Test 83.2±1.4%
GS MaxVal 77.8% Ep 73, Test 83.4±1.4%

0 20 40 60 80 100 120 140

0.3

0.4

0.5

0.6

0.7

OG MaxVal 74.8% Ep 72, Test 80.7±1.5%
GS MaxVal 73.9% Ep 36, Test 80.3±1.5%

0 20 40 60 80 100 120 140

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

OG MaxVal 73.7% Ep 34, Test 72.7±1.7%
GS MaxVal 73.4% Ep 24, Test 73.8±1.7%

0 100 200 300 400 500 600 700

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

1
Sh

ot
 1

 T
as

k

OG MaxVal 54.0% Ep 34, Test 59.8±1.9%
GS MaxVal 56.7% Ep 39, Test 66.2±1.8%

0 100 200 300 400 500 600 700

0.25

0.30

0.35

0.40

0.45

0.50

0.55

OG MaxVal 51.5% Ep 18, Test 59.4±1.9%
GS MaxVal 53.6% Ep 17, Test 59.4±1.9%

0 100 200 300 400 500 600 700

0.30

0.35

0.40

0.45

0.50

0.55

0.60

OG MaxVal 60.2% Ep 18, Test 63.5±1.9%
GS MaxVal 60.3% Ep 24, Test 63.8±1.9%

0 100 200 300 400 500 600 700

0.3

0.4

0.5

0.6

0.7

0.8

5
Sh

ot
 1

 T
as

k

OG MaxVal 76.8% Ep 49, Test 82.6±1.5%
GS MaxVal 75.3% Ep 34, Test 82.7±1.5%

0 100 200 300 400 500 600 700

0.3

0.4

0.5

0.6

0.7

0.8

OG MaxVal 77.8% Ep 20, Test 81.6±1.5%
GS MaxVal 69.8% Ep 13, Test 79.6±1.6%

0 100 200 300 400 500 600 700
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

OG MaxVal 74.7% Ep 14, Test 76.1±1.7%
GS MaxVal 73.5% Ep 7, Test 76.5±1.6%

Meta-Validation Accuracy Plots for CUB

Figure B.1: Meta-Validation Accuracy Plots for the CUB dataset. The x axes denote the number
of meta-training epochs, the y axes denote the accuracy on the meta-validation set, and the shaded
areas denote the 95% standard error confidence interval. In the legend, OG denotes the original
baseline meta-learning method, and GS denotes the version with Gradient Sharing. MaxVal [A]
Ep [B] denotes that the maximum meta-validation accuracy of [A] was achieved at epoch [B]. Test
[C]±[D] denotes that the meta-test accuracy of [C] was achieved within a 95% confidence interval
of [D]. The column headers denote the meta-learning method, while the row headers denote the
number of shots and number of tasks in the task batch. All experiments are done in the 5-way
few-shot classification setting, with the meta-test accuracy reported using an ensemble composed
of the top 5 meta-validation accuracy models.

145

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 5

 T
as

k

MAML
m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
Meta-SGD

m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
MAML++

m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 5

 T
as

k

m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 1

 T
as

k

m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 1

 T
as

k

m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

m and Plots for CUB

Figure B.2: Evolution of Gradient Sharing Parameters throughout Meta-Training for the CUB
dataset. The x axes denote the number of meta-training epochs, while the y axes denote the mean
sigmoided value of the gradient sharing parameter. Specifically, < denotes the average value of
f(<:) and _ denotes the average value of f(_:) across : ∈ [1,]. = 5 was set for all our
experiments.

146

0 50 100 150 200 250

0.25

0.30

0.35

0.40

0.45

1
Sh

ot
 5

 T
as

k

MAML

OG MaxVal 46.6% Ep 210, Test 50.0±1.9%
GS MaxVal 46.7% Ep 228, Test 49.7±1.9%

0 50 100 150 200 250

0.25

0.30

0.35

0.40

0.45

Meta-SGD

OG MaxVal 46.4% Ep 208, Test 48.8±1.9%
GS MaxVal 46.1% Ep 113, Test 48.8±1.9%

0 50 100 150 200 250

0.30

0.35

0.40

0.45

0.50
MAML++

OG MaxVal 50.0% Ep 168, Test 52.6±1.9%
GS MaxVal 49.9% Ep 197, Test 53.2±1.9%

0 50 100 150 200 250
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

5
Sh

ot
 5

 T
as

k

OG MaxVal 62.0% Ep 226, Test 67.7±1.8%
GS MaxVal 61.7% Ep 223, Test 67.0±1.8%

0 50 100 150 200 250
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

OG MaxVal 60.9% Ep 119, Test 67.0±1.8%
GS MaxVal 60.5% Ep 74, Test 67.4±1.8%

0 50 100 150 200 250
0.35

0.40

0.45

0.50

0.55

0.60

0.65

OG MaxVal 66.5% Ep 88, Test 68.9±1.8%
GS MaxVal 66.7% Ep 70, Test 69.4±1.8%

0 200 400 600 800 1000 1200

0.25

0.30

0.35

0.40

0.45

1
Sh

ot
 1

 T
as

k

OG MaxVal 46.1% Ep 170, Test 49.2±1.9%
GS MaxVal 46.1% Ep 140, Test 48.9±1.9%

0 200 400 600 800 1000 1200

0.25

0.30

0.35

0.40

0.45

OG MaxVal 46.3% Ep 111, Test 48.3±1.9%
GS MaxVal 46.1% Ep 92, Test 49.9±1.9%

0 200 400 600 800 1000 1200

0.30

0.35

0.40

0.45

0.50

OG MaxVal 49.5% Ep 99, Test 52.8±1.9%
GS MaxVal 48.3% Ep 86, Test 49.5±1.9%

0 200 400 600 800 1000 1200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

5
Sh

ot
 1

 T
as

k

OG MaxVal 61.8% Ep 178, Test 66.4±1.8%
GS MaxVal 61.3% Ep 76, Test 68.3±1.8%

0 200 400 600 800 1000 1200
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

OG MaxVal 60.0% Ep 74, Test 64.8±1.9%
GS MaxVal 60.5% Ep 54, Test 64.9±1.9%

0 200 400 600 800 1000 1200

0.40

0.45

0.50

0.55

0.60

0.65

OG MaxVal 65.3% Ep 53, Test 69.1±1.8%
GS MaxVal 63.0% Ep 31, Test 66.8±1.8%

Meta-Validation Accuracy Plots for MiniImagenet

Figure B.3: Meta-Validation Accuracy Plots for the MiniImagenet dataset. The x axes denote the
number of meta-training epochs, the y axes denote the accuracy on the meta-validation set, and
the shaded areas denote the 95% standard error confidence interval. In the legend, OG denotes
the original baseline meta-learning method, and GS denotes the version with Gradient Sharing.
MaxVal [A] Ep [B] denotes that the maximum meta-validation accuracy of [A] was achieved at
epoch [B]. Test [C]±[D] denotes that the meta-test accuracy of [C] was achieved within a 95%
confidence interval of [D]. The column headers denote the meta-learning method, while the row
headers denote the number of shots and number of tasks in the task batch. All experiments are
done in the 5-way few-shot classification setting, with the meta-test accuracy reported using an
ensemble composed of the top 5 meta-validation accuracy models.

147

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 5

 T
as

k

MAML
m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Meta-SGD

m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
MAML++

m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 5

 T
as

k

m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 1

 T
as

k

m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 1

 T
as

k

m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

m and Plots for MiniImagenet

Figure B.4: Evolution of Gradient Sharing Parameters throughout Meta-Training for the MiniIm-
agenet dataset. The x axes denote the number of meta-training epochs, while the y axes denote the
mean sigmoided value of the gradient sharing parameter. Specifically, < denotes the average value
of f(<:) and _ denotes the average value of f(_:) across : ∈ [1,]. = 5 was set for all our
experiments.

148

0 20 40 60 80 100 120 140

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1
Sh

ot
 5

 T
as

k

MAML 10x LR
OG MaxVal 23.0% Ep 137, Test 22.8±1.6%
GS MaxVal 53.7% Ep 147, Test 62.5±1.9%

0 20 40 60 80 100 120 140

0.20

0.25

0.30

0.35

0.40

0.45

Meta-SGD 10x LR
OG MaxVal 22.2% Ep 105, Test 23.1±1.6%
GS MaxVal 46.4% Ep 140, Test 55.1±1.9%

0 20 40 60 80 100 120 140
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
MAML++ 10x LR

OG MaxVal 33.9% Ep 150, Test 36.1±1.9%
GS MaxVal 54.6% Ep 115, Test 56.5±1.9%

0 20 40 60 80 100 120 140

0.2

0.3

0.4

0.5

0.6

0.7

5
Sh

ot
 5

 T
as

k

OG MaxVal 23.0% Ep 140, Test 24.8±1.7%
GS MaxVal 73.3% Ep 108, Test 79.7±1.6%

0 20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

OG MaxVal 31.9% Ep 150, Test 30.9±1.8%
GS MaxVal 68.6% Ep 91, Test 74.7±1.7%

0 20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

OG MaxVal 68.6% Ep 104, Test 69.9±1.8%
GS MaxVal 67.6% Ep 82, Test 69.0±1.8%

0 100 200 300 400 500 600 700

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1
Sh

ot
 1

 T
as

k

OG MaxVal 23.0% Ep 46, Test 23.5±1.6%
GS MaxVal 54.1% Ep 62, Test 61.8±1.9%

0 100 200 300 400 500 600 700

0.20

0.25

0.30

0.35

0.40

0.45

0.50 OG MaxVal 25.6% Ep 147, Test 25.5±1.7%
GS MaxVal 47.4% Ep 49, Test 53.0±1.9%

0 100 200 300 400 500 600 700
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

OG MaxVal 58.8% Ep 76, Test 61.3±1.9%
GS MaxVal 54.9% Ep 39, Test 57.6±1.9%

0 100 200 300 400 500 600 700

0.2

0.3

0.4

0.5

0.6

0.7

5
Sh

ot
 1

 T
as

k

OG MaxVal 25.2% Ep 102, Test 30.1±1.8%
GS MaxVal 71.2% Ep 45, Test 80.8±1.5%

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

OG MaxVal 66.0% Ep 107, Test 72.1±1.7%
GS MaxVal 65.2% Ep 42, Test 71.7±1.7%

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

OG MaxVal 74.5% Ep 29, Test 76.0±1.7%
GS MaxVal 74.5% Ep 27, Test 76.3±1.7%

Meta-Validation Accuracy Plots for CUB

Figure B.5: Meta-Validation Accuracy Plots for the CUB dataset with 10x the Inner Loop Learning
Rate. The x axes denote the number of meta-training epochs, the y axes denote the accuracy on
the meta-validation set, and the shaded areas denote the 95% standard error confidence interval.
In the legend, OG denotes the original baseline meta-learning method, and GS denotes the version
with Gradient Sharing. MaxVal [A] Ep [B] denotes that the maximum meta-validation accuracy
of [A] was achieved at epoch [B]. Test [C]±[D] denotes that the meta-test accuracy of [C] was
achieved within a 95% confidence interval of [D]. The column headers denote the meta-learning
method, while the row headers denote the number of shots and number of tasks in the task batch.
All experiments are done in the 5-way few-shot classification setting, with the meta-test accuracy
reported using an ensemble composed of the top 5 meta-validation accuracy models.

149

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 5

 T
as

k

MAML 10x LR
m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
Meta-SGD 10x LR

m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
MAML++ 10x LR

m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 5

 T
as

k

m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
m

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 1

 T
as

k

m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 1

 T
as

k

m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0
m

m and Plots for CUB

Figure B.6: Evolution of Gradient Sharing Parameters throughout Meta-Training for the CUB
dataset with 10x the Inner Loop Learning Rate. The x axes denote the number of meta-training
epochs, while the y axes denote the mean sigmoided value of the gradient sharing parameter.
Specifically, < denotes the average value of f(<:) and _ denotes the average value of f(_:)
across : ∈ [1,]. = 5 was set for all our experiments.

150

0 50 100 150 200 250

0.20

0.25

0.30

0.35

0.40

0.45

1
Sh

ot
 5

 T
as

k

MAML 10x LR

OG MaxVal 22.6% Ep 178, Test 21.2±1.6%
GS MaxVal 44.4% Ep 215, Test 48.5±1.9%

0 50 100 150 200 250

0.20

0.25

0.30

0.35

0.40

0.45

Meta-SGD 10x LR
OG MaxVal 22.6% Ep 192, Test 23.1±1.6%
GS MaxVal 44.2% Ep 250, Test 46.5±1.9%

0 50 100 150 200 250

0.25

0.30

0.35

0.40

0.45

MAML++ 10x LR

OG MaxVal 46.9% Ep 245, Test 47.9±1.9%
GS MaxVal 45.4% Ep 178, Test 46.9±1.9%

0 50 100 150 200 250

0.2

0.3

0.4

0.5

0.6

5
Sh

ot
 5

 T
as

k

OG MaxVal 23.9% Ep 26, Test 24.6±1.7%
GS MaxVal 60.1% Ep 157, Test 66.5±1.8%

0 50 100 150 200 250

0.2

0.3

0.4

0.5

0.6

OG MaxVal 50.7% Ep 250, Test 56.7±1.9%
GS MaxVal 61.0% Ep 157, Test 65.1±1.8%

0 50 100 150 200 250

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

OG MaxVal 63.9% Ep 166, Test 67.2±1.8%
GS MaxVal 64.1% Ep 127, Test 67.0±1.8%

0 200 400 600 800 1000 1200

0.20

0.25

0.30

0.35

0.40

0.45

1
Sh

ot
 1

 T
as

k

OG MaxVal 22.6% Ep 101, Test 21.8±1.6%
GS MaxVal 46.5% Ep 189, Test 49.3±1.9%

0 200 400 600 800 1000 1200

0.20

0.25

0.30

0.35

0.40

0.45

OG MaxVal 42.7% Ep 248, Test 46.4±1.9%
GS MaxVal 45.3% Ep 210, Test 48.8±1.9%

0 200 400 600 800 1000 1200

0.25

0.30

0.35

0.40

0.45

OG MaxVal 48.3% Ep 86, Test 50.2±1.9%
GS MaxVal 48.1% Ep 168, Test 49.4±1.9%

0 200 400 600 800 1000 1200

0.2

0.3

0.4

0.5

0.6

5
Sh

ot
 1

 T
as

k

OG MaxVal 23.8% Ep 25, Test 25.8±1.7%
GS MaxVal 60.3% Ep 163, Test 66.5±1.8%

0 200 400 600 800 1000 1200
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

OG MaxVal 58.2% Ep 190, Test 64.7±1.9%
GS MaxVal 58.2% Ep 64, Test 65.3±1.8%

0 200 400 600 800 1000 1200
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

OG MaxVal 64.2% Ep 34, Test 67.4±1.8%
GS MaxVal 62.9% Ep 40, Test 66.1±1.8%

Meta-Validation Accuracy Plots for MiniImagenet

Figure B.7: Meta-Validation Accuracy Plots for the MiniImagenet dataset with 10x the Inner Loop
Learning Rate. The x axes denote the number of meta-training epochs, the y axes denote the
accuracy on the meta-validation set, and the shaded areas denote the 95% standard error confidence
interval. In the legend, OG denotes the original baseline meta-learning method, and GS denotes
the version with Gradient Sharing. MaxVal [A] Ep [B] denotes that the maximum meta-validation
accuracy of [A] was achieved at epoch [B]. Test [C]±[D] denotes that the meta-test accuracy of
[C] was achieved within a 95% confidence interval of [D]. The column headers denote the meta-
learning method, while the row headers denote the number of shots and number of tasks in the task
batch. All experiments are done in the 5-way few-shot classification setting, with the meta-test
accuracy reported using an ensemble composed of the top 5 meta-validation accuracy models.

151

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 5

 T
as

k

MAML 10x LR
m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Meta-SGD 10x LR

m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
MAML++ 10x LR

m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 5

 T
as

k

m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
m

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

1
Sh

ot
 1

 T
as

k

m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

5
Sh

ot
 1

 T
as

k

m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0
m

m and Plots for MiniImagenet

Figure B.8: Evolution of Gradient Sharing Parameters throughout Meta-Training for the MiniIm-
agenet dataset with 10x the Inner Loop Learning Rate. The x axes denote the number of meta-
training epochs, while the y axes denote the mean sigmoided value of the gradient sharing param-
eter. Specifically, < denotes the average value of f(<:) and _ denotes the average value of f(_:)
across : ∈ [1,]. = 5 was set for all our experiments.

152

Appendix C: Supplementary Information for Chapter 7

C.1 Solution to the Raven’s Matrix puzzle

Figure C.1: The three basic glyphs are formed from half a circle, a triangle, and a rectangle respec-
tively.

Figure C.2: The solution to the Raven’s Matrix puzzle is the choice on the top right.

153

The source of this puzzle and its solution is [235] on Puzzling Stack Exchange.

Each panel is composed of a glyph on the left hand side (L) and a glyph on the right hand side

(R). There are three basic glyphs (see Figure C.1): a crescent (A), a half triangle (B), and a half

rectangle (C). Each glyph can also be mirrored (Mirror), i.e. flipped horizontally, or rotated by 180

degrees (Rotate). In Figure C.2, we annotate every panel in both the prompt and the choices with

the symbols that represent it. It is clear that the blank in the prompt should be filled by a left glyph

C and a right glyph Rotate[Mirror(C)], which is the choice on the top right.

C.2 Related Work on Non-Visual Sudoku

On a dataset with 216,000 puzzles split in a 10:1:1 train-val-test ratio, a deep (recurrent rela-

tional) network that has access to positional information for each cell scores 100% test accuracy

on puzzles with 33 pre-filled cells and 96.6% on puzzles with 17 pre-filled cells [221]. [220] use

a differentiable quadratic programming layer called OptNet, which like SATNet has no a priori

knowledge of the rules, in a neural network to solve for Sudoku. OptNet does not scale well

computationally and can only solve 4-by-4 Sudokus.

C.3 Experimental Settings

In the Supplementary materials, we provide source code and the shell commands to replicate

all the experimental results in the paper.

C.3.1 SATNet Fails at Symbol Grounding

The experimental settings for SATNet in Section 7.3 are identical to the original paper and

based on the authors’ open-sourced implementation available at https://github.com/locuslab/

SATNet. Specifically, the CNN used is the sequence of layers: Conv1-ReLU-MaxPool-Conv2-

ReLU-MaxPool-FC1-ReLU-FC2-Softmax, where Conv1 has a 5x5 kernel (stride 1) and 20 output

channels, Conv2 has a 5x5 kernel (stride 1) and 50 output channels, FC1 has size 800x500, FC2

has size 500x10, and the MaxPool layers have a 2x2 kernel (stride 2). This is roughly the LeNet5

154

https://github.com/locuslab/SATNet
https://github.com/locuslab/SATNet

architecture, but with one less fully connected layer at the end and around 10x the number of pa-

rameters. The SATNet layer contains 300 auxiliary variables, with = = 729 and < = 600. The full

model is trained using Adam for 100 epochs using batch size 40, with a learning rate of 2x10-3 for

the SATNet layer and 1x10-5 for the CNN.

C.3.2 MNIST Mapping Problem

We use batch size 64 for training throughout all the experiments. We use the Sudoku CNN

described above in Appendix Section C.3.1 as the backbone layer for all the experiments, except

the one in Finding 4 where we vary the architecture. We use < = 200, 0DG = 100 for the SATNet

layer for all the experiments, except the one in Finding 1 where we vary < and 0DG.

Non-SATNet baseline: The whole network was trained with Adam using a 2x10-3 learning

rate.

Finding 1: The SATNet layer was trained with a 2x10-3 learning rate, and the backbone layer

was trained with a 1x10-5 learning rate, both using Adam as was done above in Appendix Section

C.3.1.

Finding 2: Both the SATNet layer and the backbone layer were trained with Adam.

Findings 3 and 4: The SATNet layer was trained with a 1x10-3 learning rate using Adam, and

the backbone layer was trained with a 1x10-1 learning rate with SGD.

155

C.4 More Experimental Results for the MNIST Mapping Problem

C.4.1 Non-SATNet Baseline

The training accuracy for the non-SATNet baseline is 72.4±13.4% (3).

C.4.2 Experiment 1

Table C.1: Effects of < and 0DG on Training and Test Accuracy
< 0DG Training Accuracy Test Accuracy

20 50 86.7±8.4% (1) 86.8±8.4% (1)
40 50 95.6±0.3% (0) 95.5±0.3% (0)
60 50 95.7±0.3% (0) 95.6±0.4% (0)
80 50 96.2±0.2% (0) 96.0±0.3% (0)
20 100 82.2±8.4% (1) 82.4±8.4% (1)
40 100 85.9±8.3% (1) 85.9±8.3% (1)
60 100 95.3±0.5% (0) 95.3±0.5% (0)
80 100 95.1±0.2% (0) 94.9±0.2% (0)
20 200 43.9±13.5% (6) 44.0±13.4% (6)
40 200 59.6±13.3% (4) 59.7±13.3% (4)
60 200 60.0±13.4% (4) 60.2±13.3% (4)
80 200 94.7±0.3% (0) 94.6±0.3% (0)

100 200 86.3±8.4% (1) 86.2±8.4% (1)
100 400 44.8±12.5% (4) 45.0±12.6% (4)
100 600 25.6±7.7% (7) 26.2±7.9% (7)
100 800 35.1±10.3% (6) 35.8±10.4% (6)
200 200 96.2±0.1% (0) 95.8±0.2% (0)
200 400 45.6±12.9% (4) 45.3±12.9% (4)
200 600 62.4±11.5% (2) 62.4±11.7% (2)
200 800 32.7±10.4% (5) 33.2±10.5% (5)
400 200 96.4±0.2% (0) 96.0±0.2% (0)
400 400 92.1±4.2% (0) 91.8±4.0% (0)
400 600 62.8±13.5% (3) 62.7±13.4% (3)
400 800 69.3±12.8% (3) 69.4±12.7% (3)

156

C.4.3 Experiment 2

Table C.2: Effects of Different Learning Rates on the SATNet and Backbone Layer on Training
Accuracy

SATNet Layer Backbone Layer Learning Rate

Learning Rate 1x10-3 1x10-4 1x10-5

1x10-3 19.6±8.5% (9) 90.4±8.8% (1) 96.7±0.2% (0)
1x10-4 17.0±4.1% (8) 74.9±8.8% (0) 96.5±0.2% (0)
1x10-5 14.4±3.4% (9) 31.8±7.1% (5) 71.9±5.4% (0)

C.4.4 Experiment 3

The training accuracy rose from 96.7±0.2% (0) to 99.1±0.1% (0).

C.4.5 Experiment 4

Table C.3: Effects of Different Neural Architectures on Training Accuracy
Backbone Output Layer

Architectures Parameters Softmax Sigmoid

LeNet [232] 68,626 63.2±14.2% (4) 99.1±0.0% (0)
Sudoku CNN 860,780 99.1±0.1% (0) 99.5±0.0% (0)

ResNet18 [160] 11,723,722 67.6±6.2% (0) 97.4±0.4% (0)

157

	Acknowledgments
	Motivation
	Overview
	Preliminaries
	Limits of Recursive Computation
	Importance of Good Representations

	Overview of Common Deep Learning Methods
	Related Work
	Early Prior Work (Pre-2000s)
	Recent Prior Work

	Summary of Our Contributions
	Publications

	Neural Network Quine
	Introduction
	Motivations
	Related Work

	Building the Network
	How can a neural network refer to itself?
	Vanilla Quine
	Auxiliary Quine

	Training the Network
	Network Architecture
	How do we train a neural network quine?

	Results and Discussion
	Vanilla Quine
	Is this a quine?
	Hill-climbing
	Generational Replication
	Auxiliary Quine

	Conclusion

	Agent Embeddings
	Introduction
	Our Contribution

	Related Work
	Interpretability
	Generative Modeling
	Meta-Learning
	Bayesian Neural Networks

	Learning Agent Embeddings for Cart-Pole
	Supervised Generation
	Cart-Pole
	CartPoleNet
	CartPoleGen
	Sampling from CartPoleGen

	Experimental Results and Discussion
	Convergent Learning
	Exploring the Latent Space
	Repairing Missing Weights

	Limitations of Supervised Generation
	High Sample Complexity
	Subpar Model Performance
	Scaling Issues

	Potential Applications for AI
	Conclusion

	Hypernetwork Initialization
	Introduction
	Preliminaries
	Ricci Calculus
	Xavier Initialization
	Kaiming Initialization

	Review of Current Methods
	Hyperfan Initialization
	Hyperfan-in
	Hyperfan-out

	Experiments
	Feedforward Networks on MNIST
	Continual Learning on Regression Tasks
	Convolutional Networks on CIFAR-10
	Bayesian Neural Networks on ImageNet

	Conclusion

	Hypernetwork Optimization
	Introduction
	Catalog of hypergenerative Networks
	Stability under Hypergeneration
	Experiments
	Conclusion

	Gradient-Based Meta-Learning
	Introduction
	Review of Gradient-Based Meta-Learning
	MAML
	Meta-SGD
	MAML++
	Regularization Methods

	Insights from Multi-Task Learning
	Multi-Task Learning Regularizes Meta-Learning
	Meta-Learning Complements Multi-Task Learning
	Applying Multi-Task Learning Asynchronously

	Gradient Sharing
	Experimental Results and Discussions
	Acceleration of Meta-Training
	Bigger Inner Loop Learning Rates
	Comparable Meta-Test Performance
	Evolution of m and λ through Meta-Training

	Conclusion

	Logical Networks
	Introduction
	Our Contribution

	Background
	SATNet
	Visual Sudoku

	SATNet Fails at Symbol Grounding
	The Absence of Output Masking
	Visual Sudoku

	MNIST Mapping Problem
	Configuring SATNet Properly

	Conclusion

	Directions for Future Work
	References
	Supplementary Information for Chapter 4
	Re-using Hypernet Weights
	For Mainnet Weights of the Same Size
	For Mainnet Weights of Different Sizes

	More Experimental Details
	Feedforward Networks on MNIST
	Continual Learning on Regression Tasks
	Convolutional Networks on CIFAR-10
	Bayesian Neural Network on ImageNet

	Supplementary Information for Chapter 6
	More Experimental Details
	Loading the CUB and MiniImagenet Data
	Model Backbone
	Meta-Training

	More Plots
	Meta-Validation Plots
	Meta-Test Accuracy
	Momentum m and Lambda λ Variables

	Supplementary Information for Chapter 7
	Solution to the Raven's Matrix puzzle
	Related Work on Non-Visual Sudoku
	Experimental Settings
	SATNet Fails at Symbol Grounding
	MNIST Mapping Problem

	More Experimental Results for the MNIST Mapping Problem
	Non-SATNet Baseline
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

