25,803 research outputs found

    Bayesian Analysis of the Stochastic Conditional Duration Model

    Get PDF
    A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling scheme employed is a hybrid of the Gibbs and Metropolis Hastings algorithms, with the latent vector sampled in blocks. The suggested approach is shown to be preferable to the quasi-maximum likelihood approach, and its mixing speed faster than that of an alternative single-move algorithm. The methodology is illustrated with an application to Australian intraday stock market data.Transaction data, Latent factor model, Non-Gaussian state space model, Kalman filter and simulation smoother.

    Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models

    Get PDF
    The impact of parameterisation on the simulation efficiency of Bayesian Markov chain Monte Carlo (MCMC) algorithms for two non-Gaussian state space models is examined. Specifically, focus is given to particular forms of the stochastic conditional duration (SCD) model and the stochastic volatility (SV) model, with four alternative parameterisations of each model considered. A controlled experiment using simulated data reveals that relationships exist between the simulation efficiency of the MCMC sampler, the magnitudes of the population parameters and the particular parameterisation of the state space model. Results of an empirical analysis of two separate transaction data sets for the SCD model, as well as equity and exchange rate data sets for the SV model, are also reported. Both the simulation and empirical results reveal that substantial gains in simulation efficiency can be obtained from simple reparameterisations of both types of non-Gaussian state space models.Bayesian methodology, stochastic volatility, durations, non-centred in location, non-centred in scale, inefficiency factors.

    Bayesian Analysis of Hazard Regression Models under Order Restrictions on Covariate Effects and Ageing

    Get PDF
    We propose Bayesian inference in hazard regression models where the baseline hazard is unknown, covariate effects are possibly age-varying (non-proportional), and there is multiplicative frailty with arbitrary distribution. Our framework incorporates a wide variety of order restrictions on covariate dependence and duration dependence (ageing). We propose estimation and evaluation of age-varying covariate effects when covariate dependence is monotone rather than proportional. In particular, we consider situations where the lifetime conditional on a higher value of the covariate ages faster or slower than that conditional on a lower value; this kind of situation is common in applications. In addition, there may be restrictions on the nature of ageing. For example, relevant theory may suggest that the baseline hazard function decreases with age. The proposed framework enables evaluation of order restrictions in the nature of both covariate and duration dependence as well as estimation of hazard regression models under such restrictions. The usefulness of the proposed Bayesian model and inference methods are illustrated with an application to corporate bankruptcies in the UK

    Sparse Linear Identifiable Multivariate Modeling

    Full text link
    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully Bayesian hierarchy for sparse models using slab and spike priors (two-component delta-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear Identifiable Multivariate modeling) and allowing for correlations between latent variables, called CSLIM (Correlated SLIM), for the temporal and/or spatial data. The source code and scripts are available from http://cogsys.imm.dtu.dk/slim/.Comment: 45 pages, 17 figure

    Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference

    Full text link
    Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference

    Bayesian Analysis of Hazard Regression Models under Order Restrictions on Covariate Effects and Ageing

    Get PDF
    We propose Bayesian inference in hazard regression models where the baseline hazard is unknown, covariate effects are possibly age-varying (non-proportional), and there is multiplicative frailty with arbitrary distribution. Our framework incorporates a wide variety of order restrictions on covariate dependence and duration dependence (ageing). We propose estimation and evaluation of age-varying covariate effects when covariate dependence is monotone rather than proportional. In particular, we consider situations where the lifetime conditional on a higher value of the covariate ages faster or slower than that conditional on a lower value; this kind of situation is common in applications. In addition, there may be restrictions on the nature of ageing. For example, relevant theory may suggest that the baseline hazard function decreases with age. The proposed framework enables evaluation of order restrictions in the nature of both covariate and duration dependence as well as estimation of hazard regression models under such restrictions. The usefulness of the proposed Bayesian model and inference methods are illustrated with an application to corporate bankruptcies in the UK.Bayesian nonparametrics; Nonproportional hazards; Frailty; Age-varying covariate e¤ects; Ageing

    Surrogate Accelerated Bayesian Inversion for the Determination of the Thermal Diffusivity of a Material

    Full text link
    Determination of the thermal properties of a material is an important task in many scientific and engineering applications. How a material behaves when subjected to high or fluctuating temperatures can be critical to the safety and longevity of a system's essential components. The laser flash experiment is a well-established technique for indirectly measuring the thermal diffusivity, and hence the thermal conductivity, of a material. In previous works, optimization schemes have been used to find estimates of the thermal conductivity and other quantities of interest which best fit a given model to experimental data. Adopting a Bayesian approach allows for prior beliefs about uncertain model inputs to be conditioned on experimental data to determine a posterior distribution, but probing this distribution using sampling techniques such as Markov chain Monte Carlo methods can be incredibly computationally intensive. This difficulty is especially true for forward models consisting of time-dependent partial differential equations. We pose the problem of determining the thermal conductivity of a material via the laser flash experiment as a Bayesian inverse problem in which the laser intensity is also treated as uncertain. We introduce a parametric surrogate model that takes the form of a stochastic Galerkin finite element approximation, also known as a generalized polynomial chaos expansion, and show how it can be used to sample efficiently from the approximate posterior distribution. This approach gives access not only to the sought-after estimate of the thermal conductivity but also important information about its relationship to the laser intensity, and information for uncertainty quantification. We also investigate the effects of the spatial profile of the laser on the estimated posterior distribution for the thermal conductivity
    corecore