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Abstract

A Bayesian Markov Chain Monte Carlo methodology is developed for es-
timating the stochastic conditional duration model. The conditional mean of
durations between trades is modelled as a latent stochastic process, with the
conditional distribution of durations having positive support. The sampling
scheme employed is a hybrid of the Gibbs and Metropolis Hastings algorithms,
with the latent vector sampled in blocks. The suggested approach is shown to
be preferable to the quasi-maximum likelihood approach, and its mixing speed
faster than that of an alternative single-move algorithm. The methodology is
illustrated with an application to Australian intraday stock market data.
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1 Introduction

The increasing availability of data at the transaction level for financial commodities

has allowed researchers to model the microstructure of financial markets. New mod-

els and inferential methods have been developed to enable the analysis of intraday

patterns and the testing of certain microstructure hypotheses to occur.

The present paper contributes to this growing literature by presenting a method-

ology for estimating a particular dynamic model for durations between stock market

trades: the stochastic conditional duration (SCD) model. In contrast to the autore-

gressive conditional duration (ACD) model of Engle and Russell (1998), in which the

conditional mean of the durations is modelled as a conditionally deterministic func-

tion of past information, the SCD model treats the conditional mean of durations

as a stochastic latent process, with the conditional distribution of durations defined

on a positive support. As such, the contrast between the two specifications mim-

ics the contrast between the generalized autoregressive conditional heteroscedasticity

(GARCH) and stochastic volatility (SV) frameworks for capturing the conditional

volatility of financial returns. In particular, as is the case with the SV model, the

SCD model presents a potentially more complex estimation problem than its alter-

native, by augmenting the set of unknowns with a set of unobservable latent factors.

Whilst several modifications of the original ACD specification have been put for-

ward (see Bauwens et al, 2000, for a recent summary), the literature that focusses on

the SCD model is much less advanced, with the first introduction of the model into

the literature occurring in Bauwens and Veradas (2002).1 The latter authors present

a quasi-maximum likelihood (QML) technique for estimating the SCD model. They

also compare the empirical performance of the SCD model and a particular specifi-

cation of the ACD model, concluding that the SCD model is preferable according to

a number of different criteria.

In this paper, a Bayesian methodology for estimating the SCD model is presented.

The unobservable latent factors are integrated out of the joint posterior distribution
1Durbin and Koopman (2001) suggest the use of a latent variable model for durations, but do not

develop the idea further. An alternative latent variable approach to modelling durations is developed
in Ghysels, Gourieroux and Jasiak (1998). They present a two factor duration model, referred to as
the Stochastic Volatility Duration Model, which accommodates distinct dynamic processes for the
first two conditional moments. We focus on the simpler SCD model in this paper, as it provides a
more manageable basis for the development of the proposed Bayesian inferential method. Extension
of our approach to more general multi-factor models is the topic of on-going research.
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via a hybrid Gibbs/Metropolis-Hastings (MH) Markov Chain Monte Carlo (MCMC)

sampling scheme. Along the lines suggested in Durbin and Koopman (2000, 2001),

the non-Gaussian state-space representation of the model is approximated by a linear

Gaussian model in the neighbourhood of the posterior mode of the latent process.

This approximating model defines the candidate distribution from which blocks of

the latent process are drawn, via the application of the Kalman filter and simulation

smoother of de Jong and Shephard (1995). The latent factor draws are then accepted

with a particular probability, according to the MH algorithm. The MH subchains

associated with the latent factor blocks are embedded into an outer Gibbs chain in

the usual way, with estimates of all posterior quantities of interest produced from the

draws after convergence of the hybrid algorithm.

The structure of the paper is as follows. Section 2 describes the SCD model. Sec-

tion 3 then outlines the MCMC scheme, including the details of the approximation

used in the production of a candidate distribution for the vector of latent factors.

For the purpose of comparison with the multi-move, Kalman filter-based sampler,

an alternative single-move sampler is also outlined, whereby the latent factors are

sampled one element at a time. In Section 4 a controlled experiment using simulated

data, designed to compare the mixing performance of the multi-move and single move

samplers, is conducted. In line with expectations, it is found that the multi-move ap-

proach has superior mixing performance relative to the single move sampler. This

result also tallies with the comparable results for alternative MCMC algorithms for

SV models reported in Kim, Shephard and Chib (1998). In Section 5, the repeated

sampling behavior of the Bayesian estimation method is compared with the QML

approach adopted by Bauwens and Veradas (2002), via a small-scale Monte Carlo

experiment. The experiments are based on a sample size of N = 10000, to be repre-

sentative of the typically large sample sizes that are associated with transaction data.

The findings indicate that the Bayesian method is superior overall, in terms of both

bias and efficiency, as compared with the QML approach. An empirical illustration

of the Bayesian method is then described in Section 6. The multi-move sampler is

used to produce draws from the posterior distribution of the SCD model of durations

between trades in the shares of the Australian firm Broken Hill Proprietary (BHP)

Limited, for the month of August 2001. Some conclusions and proposed extensions

are given in Section 7.
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2 A Stochastic Conditional Duration Model

Denoting by τ i the time of the ith transaction, the ith duration between successive

trades at times τ i−1 and τ i is defined as xi = τ i− τ i−1. The SCD model for xi is then

given by

xi = exp(ψi)εi, (1)

ψi+1 = µ+ φ(ψi − µ) + σηηi, (2)

for i = 1, 2, ....., N, where εi is assumed to be an identically and independently dis-

tributed (i.i.d.) random variable with positive support. For the purposes of this paper

it is assumed that εi has an exponential distribution with mean (and variance) equal

to one. However other suitable distributions are possible; see, for example Bauwens

and Veradas (2002). Using (1), the assumption of an exponential distribution for εi
implies that xi is also (conditionally) exponential, with conditional mean exp(ψi) and

conditional variance exp(2ψi).
2 It is also assumed that

ηi ∼ i.i.d.N(0,σ2η), (3)

with εi and ηi independent for all i.
3

The latent factor, ψi, in (2) is assumed to be generated by a stationary process,

with |φ| < 1. As such, the unconditional mean of the latent factor process is equal to µ.
The parameter φ is a measure of persistence in the latent process, whilst σ2η captures

its variance. Stationarity implies that the initial state has a marginal distribution

given by

ψ1 ∼ N
µ
µ,

σ2η

1− φ2

¶
. (4)

2Note that one consequence of the use of an exponential distribution for εi is that the specification
of the dynamic process in (2) for the logarithm of the conditional mean of xi, also implies the same
dynamic structure for the logarithm of the standard deviation of xi. That is, the so-called dispersion
ratio is equal to one. Alternative distributions for εi could be adopted in order to allow for either
under or over-dispersion; see Bauwens and Veradas (2002) for more discussion. The two factor model
of Ghysels et al (1998) avoids the imposition of a constant dispersion ratio.

3An alternative parameterization of (1) and (2) involves setting µ to zero and estimating a
constant scaling factor β = exp(µ) in (1). In the SV context, Kim, Shephard and Chib (1998) have
shown that this type of parameterization leads to slower convergence for an MCMC algorithm. Pitt
and Shephard (1999) provide a theoretical explanation for the slow convergence.
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3 Markov Chain Monte Carlo Estimation

An MCMC algorithm is utilised to estimate the SCD model. The advantage of a

Gibbs-based MCMC approach over other exact simulation methods, such as impor-

tance sampling for example, is that the former method allows complex multivariate

densities to be broken up into lower dimensional densities. These lower dimensional

densities may then be amenable to direct simulation or, at least, allow for the easier

selection of good proposal densities. This is particularly important in this context

given the sample sizes that are associated with transaction data, as sampling the

entire state vector in one block is not efficient. An MCMC algorithm is presented for

estimating the SCD model which is a hybrid of the Gibbs and MH algorithms. As

noted above, the algorithm involves sampling the latent state vector in blocks of size

greater than 1 (i.e. implementing a multi-move), via the application of the Kalman

Filter and simulation smoother to the linear Gaussian approximation to the model.

A second algorithm, based on single-move sampling of the states, is presented for

comparison purposes. All algorithms are implemented using the GAUSS software.

3.1 A Multi-Move MCMC Algorithm

Defining the N−dimensional vector of durations as x = (x1, x2, . . . , xN)
0 and the

N−dimensional latent state vector as ψ = (ψ1,ψ2, . . .ψN)0, the joint posterior for the
full set of unknowns in the SCD model is given by

p(ψ, θ|x) ∝ p(x|ψ)× p(ψ|θ)× p(θ), (5)

where p(x|ψ) denotes the joint density function of the observations given the latent
volatilities, p(ψ|θ) denotes the joint density of the latent state vector, conditional on
the vector of unknown parameters, θ = (φ, µ,ση)

0, and p(θ) is the prior density for

the set of unknown parameters. Given the distributional specifications in (1) and (2),

it follows that

p(x|ψ) =
NY
i=1

p(xi|ψi) (6)

and

p(ψ|θ) =
(
N−1Y
i=1

p(ψi+1|ψi, θ)
)
× p(ψ1|θ), (7)

where

p(xi|ψi) = exp(−ψi) exp {−xi exp(−ψi)} , (8)
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for i = 1, 2, . . . , N ,

p(ψi+1|ψi, θ) ∝ exp{
−1
2σ2η

£
ψi+1 − µ− φ(ψi − µ)

¤2}, (9)

for i = 1, 2, . . . , N −1, and p(ψ1|θ) is as defined in (4). Standard priors for ση, φ, and

µ are used, with details given below4.

In employing a Gibbs-based MCMC sampler simulated draws from the full con-

ditional distribution relating to each block of unknowns must be obtained. In the

multi-move sampler, all of the latent states are sampled in blocks of size greater than

one.5 Since the SCD model is a partially non-Gaussian state space model, the dif-

ficulty is in finding a good candidate density for producing a draw of the block of

states. One approach outlined by Shephard (1994) and Carter and Kohn (1994), and

implemented by Kim, Chib and Shephard (1998) for the SV model, is to approximate

the non-Gaussian density in the measurement equation, (1), with a mixture of nor-

mal densities. This approach is, however, model specific and given the many different

possible distributional assumptions that could be adopted for durations, we have cho-

sen to develop a sampling scheme based a more general approximation method. The

methodology employed is outlined in Durbin and Koopman (2000, 2001), whereby

the non-Gaussian density for each observation is approximated by a Gaussian density

with the same mode. The curvature of the approximating Gaussian density is equated

to that of the non-Gaussian density at the mode. The approximation is performed

via an iterative Kalman filter which is operationally quite simple.

The steps of the multi-move sampler are summarized as follows:

1. Initialize ψ,φ, µ,ση.

2. Sample ση|x,ψ,φ, µ.

3. Sample φ|x,ψ, µ,ση.

4. Sample µ|x,ψ,φ,ση.

5. Sample ψ|θ, where ψ is broken up into blocks of size greater than one.
4See also Kim, Shephard and Chib (1998).
5Sampling latent factors jointly, rather than one at a time, was first proposed by Carter and

Kohn (1994) and Frühwirth-Schnatter (1994).
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6. Repeat steps 2 to 5 until convergence has been achieved.

The four conditional posteriors of ση, φ, µ and ψ respectively, including the sam-

pling algorithm required to draw from each conditional, are detailed below.

3.1.1 Sampling ση

A conjugate inverted-gamma prior for ση is adopted, such that

p(ση) ∼ IG
µ
σr
2
,
Sσ
2

¶
, (10)

with σr and Sσ representing hyperparameters. Given that

p(ση|x,ψ,φ, µ) ∝ p(ψ|θ)p(ση), (11)

where p(ψ|θ) is as specified in (7), it follows that the full conditional posterior distri-
bution for ση is given by

ση|x,ψ,φ, µ ∼ IG
(
N + σr
2

,
Sσ + (ψ1 − µ)2(1− φ2) +

PN−1
i=1 (ψi+1 − µ− φ(ψi − µ))2
2

)
.

(12)

Draws from (12) can be obtained directly using a standard simulation algorithm.

3.1.2 Sampling φ

The prior for φ is derived from the beta density function by extending the density

over the (-1,1) interval. The prior density for φ is thus given by

p(φ) ∝
½
1 + φ

2

¾α−1½
1− φ

2

¾β−1
, (13)

where α, β > 0.5 are shape parameters for the resultant stretched beta distribution.

The prior in (13) imposes the stationarity restriction on φ, whilst α and β can be

selected to assign reasonably high prior weight to values of φ that imply a fair degree

of persistence in the latent process, as tallies with previous empirical results in the

durations literature. The conditional posterior for φ is then defined as

p(φ|x,ψ, µ,ση) ∝ p(ψ|θ)p(φ). (14)
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A beta prior is not conjugate for p(ψ|θ). Hence, the conditional posterior for φ
in (14) does not mimic the normal structure of p(ψ|θ), as a function of φ, which
results from (7). However, it is straightforward to define a candidate density based

on that normal structure, with the draws reweighted via an MH algorithm. Defining

the candidate density q as a normal density with mean

bφ = PN−1
i=1 (ψi+1 − µ)(ψi − µ)PN−1

i=1 (ψi − µ)2
(15)

and variance

σ2φ = σ2η

(
N−1X
i=1

(ψi − µ)2
)−1

, (16)

the steps of the MH Algorithm, inserted at iteration j of the Gibbs chain, are:

1. Specify φ(j−1) as an initial value for the algorithm.

2. Draw a candidate φ∗ from N(bφ,σ2φ).
3. Accept φ(j) = φ∗, with probability equal to min

³
1, w(φ∗|.)

w(φ(j−1)|.)

´
, where w(φ|.) =

p(φ|.)
q(φ|.) , p(φ|.) denotes the conditional posterior in (14), evaluated at the relevant
argument, and q(φ|.) is the corresponding candidate ordinate.

4. Otherwise accept φ(j) = φ(j−1).

3.1.3 Sampling µ

A uniform prior over R1 is defined for µ. Hence, the conditional posterior for µ is
normal, with mean

bµ = σ2µ
σ2η

(
(1− φ2)ψ1 + (1− φ)

N−1X
i=1

(ψi+1 − φψi)

)
(17)

and variance

σ2µ = σ2η
©
(T − 1)(1− φ)2 + (1− φ2)

ª−1
. (18)

Draws from this conditional can be obtained directly using a standard simulation

algorithm.
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3.1.4 Sampling ψ

A blocking scheme for ψ is defined such that

ψ = (ψ
1
. . .ψk1,ψk1+1 . . .ψk2 ,ψk2+1 . . . , . . .ψkK ,ψkK+1 . . .ψN),

where k1, k2, . . . , kK are the knot points separating the (K + 1) blocks. The knots at

each iteration are selected stochastically via the following formula,

kl = round(N/(K + 1)× (l + Ul)) l = 1, . . . ,K, (19)

where Ul is uniformly distributed (0, 0.5), and K is chosen to satisfy the condition

N/(K+1) > 2.6 The selection of K is based on a compromise between the simulation

efficiency gains of using a larger average block size against the higher associated

rejection rate in the algorithm.

Defining ψBl = (ψk(l−1)+1
. . .ψkl), l = 1, . . . ,K + 1 , with k0 = 0 and ψ

k0+1
= ψ

1
,

the steps of the sampling scheme for ψ, inserted at iteration j of the Gibbs chain,

are:

1. Sample ψjB1|x,ψj−1B2
, θ.

2. Sample ψjl |x,ψjl−1,ψj−1l+1 , θ, for l = 2, 3, ...,K.

3. Sample ψjBK+1 |x,ψjBK , θ.

For each block ψBl a linear Gaussian approximation to the non-Gaussian state

space model represented by (1) and (2) is produced. The Gaussian approximation

then serves as a candidate model from which a candidate draw for ψBl is produced.

The candidate draw is accepted with a probability determined by the appropriate

MH ratio. The methodology employed to produce the linear Gaussian approximat-

ing model was first suggested by Durbin and Koopman (2000, 2001) in the context

of general non-Gaussian state space models. The approximating model is derived

in such a way that the mode of the candidate density associated with this model,

q(ψBl |x,ψBl−1,ψBl+1 , θ), is equivalent to the mode of the actual conditional posterior
for ψBl as based on the non-Gaussian model, p(ψBl |x,ψBl−1,ψBl+1 , θ). In order to min-
imize the notational complexity associated with the description of this component of

6We set K such that N/(K + 1) = 20 in all applications of the algorithm in the paper. See also
Shephard and Pitt (1997) for a related selection rule.
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the algorithm, it is assumed for the moment that K = 0, i.e. that ψ is simulated as

a single block of size N.

The process of matching the modes begins with an initial specification of an ap-

proximating measurement equation as

exi = ψi + eεi, (20)

for i = 1, 2, . . . , N , where eεi ∼ N(0, eHi) and both exi and eHi are defined as particular
functions of xi and an initial trial value of ψi, eψi. As is demonstrated below, these
functions are updated via an iterative procedure in such a way that the modes of

q(ψ|x, θ) and p(ψ|x, θ) are ultimately equated. The mode of the candidate density
q(ψ|x, θ) is the solution to the vector equation ∂ ln q(ψ|x,θ)

∂ψ
= 0. Equivalently, it is the

solution to the vector equation ∂ ln q(ψ,x|θ)
∂ψ

= 0. Given the linear Gaussian model in

(20), the assumption of the density in (4) for ψ1, and the form of the linear Gaussian

state equation in (2), it follows that

ln q(ψ, x|θ) = constant − 1
2

µ
1− φ2

σ2η

¶
(ψ1 − µ)2

− 1

2σ2η

N−1X
i=1

¡
ψi+1 − [µ+ φ(ψi − µ)]

¢2
−1
2

NX
i=1

(exi − ψi)
2eHi . (21)

Differentiating with respect to ψi and setting the result equal to zero yields the

equations

∂ ln q(ψ, x|θ)
∂ψi

= (di − 1)
µ
1− φ2

σ2η

¶
(ψ1 − µ)

−di
µ
1

σ2η

¶¡
ψi − [µ+ φ(ψi−1 − µ)]

¢
+

µ
φ

σ2η

¶¡
ψi+1 − [µ+ φ(ψi − µ)]

¢
+
(exi − ψi)eHi

= 0, (22)

i = 1, 2, . . . , N, where d1 = 0 and di = 1 for i = 2, . . . , N. Since q(ψ|x, θ) is Gaussian,
the solution to (22) is equivalent to the mean of q(ψ|x, θ) which can, in turn, be
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produced via the application of the Kalman filter and smoother to the model defined

by (20) and (2).

Similarly, for the non-Gaussian model, the mode of p(ψ|x, θ) is the solution to
the vector equation ∂ ln p(ψ|x,θ)

∂ψ
= 0, and therefore equivalently, to the vector equation

∂ ln p(ψ,x|θ)
∂ψ

= 0. Given the model in (1) and (2) and the distributional assumption in

(4) for ψ1,

ln p(ψ, x|θ) = constant− 1
2

µ
1− φ2

σ2η

¶
(ψ1 − µ)2

− 1

2σ2η

N−1X
i=1

¡
ψi+1 − [µ+ φ(ψi − µ)]

¢2
−

NX
i=1

h(xi|ψi), (23)

where h(xi|ψi) = − ln p(xi|ψi). Again, differentiating with respect to ψi and setting

the result to zero produces the first order conditions,

∂ ln p(ψ, x|θ)
∂ψi

= (di − 1)
µ
1− φ2

σ2η

¶
(ψ1 − µ)

−di
µ
1

σ2η

¶¡
ψi − [µ+ φ(ψi−1 − µ)]

¢
+

µ
φ

σ2η

¶¡
ψi+1 − [µ+ φ(ψi − µ)]

¢
−∂h(xi|ψi)

∂ψi
= 0, (24)

for i = 1, 2, . . . , N, with di as defined above. The approximate model in (20) is to be

chosen in such a way that the solution to (22) is equivalent to the solution to (24). To

achieve this the term ∂h(xi|ψi)
∂ψi

in (24) is linearized around the trial value eψi as follows
∂h(xi|ψi)

∂ψi
≈ ∂h(xi|ψi)

∂ψi

¯̄̄̄
ψi=

eψi +
∂2h(xi|ψi)

∂ψ2i

¯̄̄̄
ψi=

eψi (ψi −
eψi). (25)

Substituting (25) into (24), and rearranging, an explicit expression for ∂ ln q(ψ,x|θ)
∂ψi

is

11



obtained,

∂ ln q(ψ, x|θ)
∂ψi

= (di − 1)
µ
1− φ2

σ2η

¶
(ψ1 − µ)

−di
µ
1

σ2η

¶¡
ψi − [µ+ φ(ψi−1 − µ)]

¢
+

µ
φ

σ2η

¶¡
ψi+1 − [µ+ φ(ψi − µ)]

¢
+
(exi − ψi)eHi

= 0, (26)

where
.

hi =
∂h(xi|ψi)

∂ψi
,
..

hi =
∂2h(xi|ψi)

∂ψ2i
, eHi = ..

h
−1
i and exi = ψi − eHi .h. Given the form of

the density in (8),

h(xi|ψi) = ψi + xi exp(−ψi), (27)

.

hi = 1− xi exp(−ψi), (28)

..

hi = xi exp(−ψi), (29)

eHi = x−1i exp(ψi) (30)

and

exi = ψi − x−1i exp(ψi) + 1. (31)

The iterative procedure is thus based on the following steps:

1. Initialize eHi and exi, via the initial trial value of ψi, eψi.
2. Run the Kalman filter and smoother based on (20) and (2) to produce the mode

of q(ψ|x, θ).

3. Substitute the mode of q(ψ|x, θ) into (24) and check whether the N first order

conditions are satisfied.
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4. If the first order conditions are not satisfied recalculate eHi and exi using (27) to
(31), as based on the output of the Kalman filter and smoother in 2. (i.e. the

current mode of q(ψ|x, θ))

5. Repeat from step 2 until the first order conditions in (24) are satisfied.

Once the linear Gaussian approximating model has been obtained, that is the

measurement equation as defined by (20), with eHi and exi derived via the above
iterative procedure, a candidate draw of ψ, ψ∗, is produced from q(ψ|x, θ). Drawing
from q(ψ|x, θ) is implemented through the use of the Kalman filter and simulation
smoother of de Jong and Shephard (1995).

In summary then, and reverting to the consideration of producing the jth draw

of block Bl, l = 1, 2, . . . ,K + 1, of the latent vector ψ at iteration j of the Gibbs

sampler, the steps are:

1. Initialize ψBl .

2. Run the iterative procedure described above to produce eH and ex.7
3. Define the approximating measurement equation as (20), for the (kl − k(l−1))
elements in the block ψBl .

4. Generate a candidate ψ∗Bl from q(ψBl |x,ψBl−1,ψBl+1 , θ) using the Kalman filter
and simulation smoother.

5. Accept ψ(j)Bl = ψ∗Bl , with probability equal to min
µ
1,

w(xBl |ψ∗Bl )
w(xBl |ψ

(j−1)
Bl

)

¶
, where

w(xBl|ψBl) =
p(xBl |ψBl)
q(xBl |ψBl )

.8

6. Otherwise accept ψ(j)Bl = ψ
(j−1)
Bl

.

7 eH and ex are re-dimensioned appropriately to match the blocking of ψ.
8Note that

p(ψBl
|x,ψBl−1 ,ψBl+1 ,θ)

q(ψBl
|x,ψBl−1 ,ψBl+1 ,θ)

∝ p(xBl |ψBl )p(ψBl |ψBl−1 ,ψBl+1 ,θ)
q(xBl |ψBl )q(ψBl |ψBl−1 ,ψBl+1 ,θ)

∝ p(xBl |ψBl )
q(xBl |ψBl )

since

p(ψBl
|ψBl−1 ,ψBl+1

, θ) = q(ψBl
|ψBl−1 ,ψBl+1

, θ).
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3.2 A Single-Move MCMC Algorithm

For the purpose of comparison, an alternative Gibbs-MH scheme is provided which is

defined by the blocking scheme (ψ1,ψ2, . . . ,ψN ,φ, µ,ση). This form of algorithm is

referred to as a single-move sampler, as the latent factor at each time point t is sampled

individually. The problem with this approach is that the high correlation between the

components of ψ|x, θ impacts on the Markov chain, restricting its movement across
the joint parameter space. For example, in the context of partially non-Gaussian state

space models, Shephard (1994) has shown the single-move sampler to have inferior

simulation efficiency when compared with a multi-move sampler based on a blocking

of the latent states. It is of interest to quantify the relative efficiency performance of

the two samplers in the durations context.

The following sampling scheme is used in the single-move sampler:

1. Initialize ψ,φ, µ.

2. Sample ση|x,ψ,φ, µ.

3. Sample φ|x,ψ, µ,ση.

4. Sample µ|x,ψ,ση,φ.

5. Sample ψ1|x,ψ2, θ.

6. Sample ψi|x,ψi−1,ψi+1, θ, for i = 2, . . . , N − 1.

7. Sample ψN |x,ψN−1, θ.

8. Repeat steps 2 to 7 until convergence has been achieved.

With the parameters sampled as described in Section 3.1, the single-move sam-

pler involves replacing the sampling algorithm for ψ outlined in Section 3.1.4 by the

following scheme.

3.2.1 Sampling ψi

In the single move sampler the ith state ψi is sampled individually, for i = 1, 2, . . . , N.

As a consequence of the Markov nature of the state process in (2), ψi is depen-

dent upon the values of ψi−1 and ψi+1. The full conditional distribution for ψi,

14



i = 2, 3, . . . N − 1, is

p(ψi|x,ψi+1,ψi−1, θ) ∝ p(xi|ψi, θ)p(ψi|ψi+1,ψi−1, θ), (32)

where

p(ψi|ψi+1,ψi−1, θ) ∝ p(ψi+1|ψi, θ)p(ψi|ψi−1, θ). (33)

From (2) it follows that

ψi|ψi+1,ψi−1, θ ∼ N(ωi, ν2i ), (34)

with

ωi =
µ+ (ψi+1 − µ) + φ(ψi−1 − µ)

1 + φ2
, (35)

ν2i =
σ2η

1 + φ2
. (36)

The conditional posterior of the initial value ψ1, is

p(ψ1|x,ψ2, θ) ∝ p(x1|ψ1)p(ψ1|ψ2, θ), (37)

where

p(ψ1|ψ2, θ) ∝ p(ψ2|ψ1, θ)p(ψ1|θ) (38)

is normal with mean and variance given respectively by

ω1 =
φ(ψ2 − µ+ 2φµ) + µ

1 + 2φ2
, (39)

and

ν21 =
σ2η

1 + 2φ2
. (40)

The conditional posterior of ψN is

p(ψN |x,ψN−1, θ) ∝ p(xN |ψN , θ)p(ψN |ψN−1, θ), (41)

where p(ψN |ψN−1, θ) is normal with mean

ωN = µ+ φ(ψN−1 − µ) (42)

15



and variance

νN = σ2η. (43)

To construct a candidate density a function m(ψi|xi) = ln p(xi|ψ) is defined,
where p(xi|ψi) is given by (8). An approximation to m(ψi|xi) is obtained using
a first-order Taylor series expansion around ωi as defined in (35). Combining this

approximation with the normal density associated with (34) yields a normal candidate

density q(ψi|x,ψi+1,ψi−1, θ) with mean

ω∗i = ωi + ν2i (xi exp{−µ}− 1) (44)

and variance ν2i .

The steps of the MH Algorithm, inserted at iteration j of the Gibbs chain for

i = 1, . . . , N , are:

1. Draw a candidate ψ∗i from N(ω∗i , ν
2
i )

2. Accept ψ(j)i = ψ∗i , with probabilitymin
µ
1,

w(x|ψ∗i )
w(x|ψ(j−1)i )

¶
, wherew(x|ψi) = p(x|ψi)

q(x|ψi) .
9

3. Otherwise accept ψ(j)i = ψ
(j−1)
i .

4 Simulation Efficiency

In this section we report the results of a simulation experiment designed to ascertain

the relative simulation efficiency of the two MCMC samplers outlined in the paper,

based respectively on the multi-move and single-move algorithms. To evaluate simu-

lation efficiency the inefficiency factor is calculated; see also Kim, Shephard and Chib

(1998). The inefficiency factor may be interpreted as the magnitude of the variance

of the sample mean of the MCMC chain, relative to the variance of the mean of a

hypothetical independently distributed sample of draws. To calculate the inefficiency

factor the following formula is utilised,

cIF = 1 + 2 B

B − 1
BX
i=1

KQS

µ
i

B

¶bρi, (45)

9Note that as with the multi-move sampler the calculation of the MH transition probability is
simplified because p(ψi|ψi+1,ψi−1, θ) = q(ψi|ψi+1,ψi−1, θ).

16



where bρi is the estimate of the correlation at lag i of the MCMC iterates, KQS is the

Quadratic Spectral (QS) kernel and B is the bandwidth.10 The QS kernel is defined

as

KQS(x) =
25

12π2x2

µ
sin(6πx/5)

6πx/5
− cos(6πx/5)

¶
. (46)

To select the bandwidth B the automatic bandwidth selector of Andrews (1991) is

used, which estimates the bandwidth as a function of the data. For the QS kernel

the automatic bandwidth selector is defined as

bB = 1.3221(bα(2)M)1/5, (47)

where M is the number of iterations in the Markov Chain and

bα(2) = 4bρ2abσ4a
(1− bρa)8

Á bσ4a
(1− bρa)4 . (48)

The terms bρa and bσa in (48) are estimated by running a first-order autoregressive
linear regression on the draws of the Markov Chain, where bρa is the autoregressive
coefficient and bσa is the estimated standard error.
In the simulation experiment, both the multi-move and single-move samplers,

based on a sample size of 5000, are run for 25000 iterations, with a burn in period

of 10000 iterations. The parameter settings used in generating the artificial data

are φ = 0.95, ση = 0.1 and µ = 0.0334. These parameter values are similar to

those reported in Section 6 for the empirical application of the SCD model. The

hyperparameters σr and Sσ in (10) are set to 3 and 0.03 respectively, implying a prior

mean of 0.12 and variance 0.0017 for ση. The hyperparameters α and β in (13) are set

to 15 and 1.2 respectively, implying a prior mean of 0.85 and a variance of 0.016 for φ.

In both cases these prior settings seem reasonable, given published empirical findings

on durations. Experimentation with different prior settings leads to the conclusion

that for the large sample sizes used in the analysis in this and subsequent sections,

the results are robust to the precise prior specifications.

Table 1 contains the results of the experiment. The factors for the multi-move

sampler as relate to ση and µ are both markedly smaller than the corresponding

factors for the single-move sampler. The factors for φ are approximately the same

for both samplers. Based on the estimated inefficiency factors for ση, approximately
10We select the QS kernel as Andrews (1991) finds it to be superior in terms of an asymptotic

truncated mean squared error criterion, relative to other kernels.
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Table 1: Inefficiency Factors for the Multi-move and Single-move Algorithms

Parameter Multi-move Single-move

φ 56.93 55.38
ση 346.54 643.28
µ 3.11 4.78

35000 iterations in the multi-move sampler and 65000 iterations in the single-move

sampler are required to limit the Monte Carlo error to be less than 1% of the percent

of the variation of the error which is related to the data.

5 Sampling Experiments

A small-scale Monte Carlo experiment is conducted to assess the sampling properties

of the Bayesian simulation method and to compare these properties with those of

the QML approach adopted by Bauwens and Veradas (2002) in their analysis of the

SCD model. Earlier research by Jaquier, Polson and Rossi (1994) in an SV setting

shows that the QML approach works poorly with relatively small sample sizes (i.e.

N = 500), showing bias and inefficiency relative to the Bayesian MCMC method.

With a larger sample size of N = 2000, however, Jaquier et al find little bias in both

the QML and Bayesian estimators but find that the Bayesian estimator produces

efficiency gains over the QML estimator. In the Monte Carlo experiment conducted

here a sample size of N = 10000 is employed to be representative of the typically large

sample sizes that are associated with transaction data. Artificial data is generated

for the model specified in (1) and (2), with parameter settings φ = {0.95, 0.90},
ση = {0.1, 0.3} and µ = 0.0334. Again, these parameter settings correspond to a

range of values that are representative of the estimated parameter values reported for

the empirical study undertaken in Section 6. The hyperparameters σr, Sσ, α and β

are set to the values described in the previous section. Bayesian point estimates of

the parameters are produced using the marginal posterior means estimated from the

draws of the MCMC algorithm.
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The QML approach is based on a logarithmic transformation of the measurement

equation (1) which produces a linear relationship between the transformed durations

and the state. The transformed measurement equation has the following form,

ln(xi) = ci + ψi + ζi, (49)

where ci = E[ ln εi] and ζi has a zero mean and variance equal to V ar[ln εi]. The

QML estimation method involves constructing the likelihood function via the Kalman

filter, by treating ζi as though it were i.i.d.N(0, V ar[ln εi]). When εi is assumed to

be exponentially distributed with a mean of 1, E[ ln εi] = −γ∗, with γ∗ ≈ 0.5772 =
Euler’s constant, and V ar[ln εi] = π2

6
; see Johnson, Kotz and Balakrishnan (1994).

Standard asymptotic theory implies that the QML estimator will be consistent yet

inefficient. This corresponds with the simulation findings of Jaquier et al (1994) cited

earlier for the SV context, who find little evidence of bias with larger sample sizes, yet

find the QML estimator to be inefficient relative to their exact Bayesian estimator.

The number of replications for each parameter setting is 100. To reduce the

computational burden, the MCMC algorithm is implemented with a burn-in period

of only 2000 iterations after which the next 5000 iterations are stored11. The results

are reported in Table 2. The true parameter values are shown in the second column
and the Monte Carlo (MC) mean and root mean squared error (RMSE) for the MCMC

and QML methods respectively, reported in the subsequent columns. The MC mean

shows the MCMC sampler to have negligible bias for all parameter settings. In

contrast, the QML estimator still shows clear bias for one particular setting, namely

for φ = 0.9 and ση = 0.1, even with a sample size of 10000. As indicated by the

ratios of RMSE’s reported in the last column in the table, the MCMC method is

more accurate than the QML method in nine of the twelve cases. For both φ and σ2η
the MCMC approach is clearly dominant, whilst for µ there are mixed results, but

with little difference between the two estimators. Overall, the gains in accuracy for

both φ and σ2η in particular, provide support in favor of the exact Bayesian approach.

6 An Illustrative Empirical Application

The Bayesian methodology for estimating the SCD model is illustrated using trans-

action data for BHP Limited, an Australian listed company. Trade durations are
11The burn in period of 2000 is chosen by a preliminary visual inspection of the iterates, which

have clearly converged after 2000 iterations.
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Table 2: Repeated Sampling Performance of the Bayesian (MCMC) and QML Meth-
ods. Results Based on 100 Replications of Samples of Size N=10000.

Parameter True Value MC Mean RMSE Relative RMSE

MCMC QML MCMC QML QML/MCMC

φ 0.95 0.9489 0.9461 0.0081 0.0135 1.6700
ση 0.1 0.0999 0.1036 0.0089 0.0161 1.8106
µ 0.0334 0.0351 0.0355 0.0247 0.0235 0.9515

φ 0.95 0.9497 0.9492 0.0041 0.0046 1.1295
ση 0.3 0.3006 0.2989 0.0109 0.0125 1.1429
µ 0.0334 0.0272 0.0308 0.0652 0.0579 0.8877

φ 0.9 0.8934 0.8594 0.0257 0.1450 5.6498
ση 0.1 0.1021 0.1124 0.0158 0.0411 2.6025
µ 0.0334 0.0341 0.0313 0.0134 0.0139 1.0355

φ 0.9 0.9000 0.8993 0.0087 0.0090 1.0326
ση 0.3 0.2981 0.3003 0.0141 0.0165 1.1676
µ 0.0334 0.0301 0.0302 0.0309 0.0306 0.9907
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initially calculated for the month of August 2001, amounting to N = 48190 obser-

vations. Only trades between 10:20 a.m. and 4:00 p.m. are recorded. Zero trade

durations are not included; see also Hautsch and Pohlmeier (2002). This filtering re-

duces the length of the time series to N = 27746 observations. The intraday pattern

in the duration data is modelled using a cubic smoothing spline, g(xi), where the

roughness penalty is selected using generalized cross-validation12; see also Engle and

Russell (1998). The adjusted durations are are then constructed as

bxi = xi
g (xi)

. (50)

The full series of adjusted durations, as well as the first 5000 observations, are plotted

in Figure 1.

Figure 1. Adjusted Durations for August, 2001.

The changes over time in both the magnitude and variability of the durations are

obvious, with clustering in both properties also evident. Given the assumption of
12The smoothing spline is estimated using the ‘fields’ package in the ‘R’ software.
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an exponential distribution, the Markov process for the latent factor ψi models time

variation in both the conditional mean and the conditional standard deviation of the

durations. Hence, this process should capture the observed features in the series.

Figure 2: Kernel Density Estimate of the Adjusted Durations (––); Exponential

Density (· · · · · · ).

Figure 2 depicts the disparity between a kernel density estimate of the data and

an exponential density with a mean equal to the unconditional mean of the adjusted

durations. It is clear that the shoulder of the exponential density is narrower than that

of the kernel density estimate of the adjusted series. In addition, there is a larger

frequency of observations near zero than is associated with the fitted exponential

density. The goodness of fit is evaluated using the Kolmogorov-Smirnov goodness of

fit test, with the test rejecting the null hypothesis that the observed data comes from

the specified exponential distribution.13

13See Sheskin (2000) for details. The calculated value of the test statistic of 0.065 exceeds the
crititical value of 0.008, leading to rejection of the null hypothesis at the 5% significance level.
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Figure 3. Graphical Output from the MCMC Multi-move Sampler: August 2001

Durations.

Figure 3 contains graphical summaries of the output of the multi-move MCMC

sampler. All results are based on 35000 draws after a burn-in of 5000 draws. The

hyperparameters σr, Sσ, α and β are set to the values previously described in Section

4. The top row contains plots of the iterates from the marginal distributions for φ,

ση and µ respectively. The second row contains estimates of the marginal posterior

densities, whilst the autocorrelation function (ACF) of the iterates is presented in

the third row for φ, ση and µ respectively. The plots of the iterates and the ACF

functions show a reasonably high amount of correlation for both φ and ση, whilst

there is a very low amount of autocorrelation present in the draws of µ.
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Table 3 reports the marginal posterior means and standard deviations (SD), the

inefficiency factors and the correlation matrix of the iterates. The high degree of

simulation inefficiency indicated by the inefficiency factors for φ and ση is consistent

with the slow decrease in the ACF’s for these two parameters. The marginal posterior

mean of φ indicates that the (logarithm) of the conditional mean (and standard

deviation) of durations is quite persistent.

Table 3: Output from the MCMC Multi-move Sampler: August, 2001 Durations

Parameter Marginal Marginal Inefficiency Correlation
Posterior Posterior Factor Matrix
Mean SD φ ση µ

φ 0.9232 0.0072 80.6119 1.000 -0.8764 0.1225
ση 0.1529 0.0092 388.2285 -0.8764 1.000 -0.1589
µ -0.0716 0.0138 2.4432 0.1225 -0.1589 1.000

Finally, in Figure 4 a plot of the kernel density estimate of the standardised

residuals, bεi = bxi
exp(bψi) , (51)

is compared with an exponential distribution with the same mean as the unconditional

mean of the adjusted durations. In (51), the conditional mean at each observational

point, E(xi|ψi) = exp(ψi), i = 1, 2, . . . , N, is evaluated using the marginal posterior
mean estimate of ψi, denoted by bψi. The graph clearly shows that the conditional
distribution provides a very good match for the exponential distribution. The good-

ness of fit test statistic still rejects the null. However, the test statistic here is smaller

than the test statistic given earlier, indicating stronger support for the null hypothesis

of an exponential distribution than when the dynamic behaviour in durations is not

modelled using (2).14

14The calculated value of the test statistic is 0.048, thereby still leading to rejection of the null
hypothesis at the 5% significance level. However, given the size of the sample, any deviation between
the actual and theoretical distributions is likely to be associated with rejection of the theoretical
distribution. See Conover (1980) for more on this point.
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Figure 4. Kernel Density Estimate of the standardised (Adjusted) Durations (––);

Exponential Density (· · · · · · ).

7 Conclusions

In this paper an MCMC estimation methodology for the SCD model has been intro-

duced. The methodology exploits the state space representation of the latent factor

model for durations. The multi-move sampler proposed has been shown to possess

substantially better mixing properties than an alternative single-move sampler. This

result corresponds with theoretical and empirical findings in other applications of par-

tially non-Gaussian state space models. The exact MCMC approach has also been

compared with the approximate QML procedure using a small-scale Monte Carlo ex-

periment. The results indicate that the MCMC approach tends to outperform the

QML approach in terms of both bias and efficiency.

Application of the Bayesian methodology to empirical duration data on BHP

trades indicates a high degree of persistence in the conditional mean (and standard
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deviation) of durations. Once the data is adjusted for the dynamic behaviour cap-

tured by the latent factor process, the distribution of the durations fits the assumed

exponential distribution more closely than when such dynamic behaviour is not mod-

elled.

Possible extensions to the methodology include the use of a wider range of dis-

tributional assumptions for conditional durations, in particular those that cater for

varying degrees of dispersion. The allowance for more complex dynamics in the latent

factor process could also be investigated, including the accommodation of long mem-

ory dynamic behaviour in durations, as well as the use of more flexible multi-factor

models such as that proposed by Ghysels et al (1998). Along the lines suggested by

Durbin and Koopman (2001), the estimation of the intraday seasonal pattern could be

directly incorporated into the MCMC scheme, rather than the data being filtered in a

preliminary step. Of particular interest would be the inclusion of additional regressors

in the duration model in order to test various market microstructure hypotheses.
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