3 research outputs found

    Bayesian Zero-Shot Learning

    Get PDF
    Object classes that surround us have a natural tendency to emerge at varying levels of abstraction. We propose a Bayesian approach to zero-shot learning (ZSL) that introduces the notion of meta-classes and implements a Bayesian hierarchy around these classes to effectively blend data likelihood with local and global priors. Local priors driven by data from seen classes, i.e., classes available at training time, become instrumental in recovering unseen classes, i.e., classes that are missing at training time, in a generalized ZSL (GZSL) setting. Hyperparameters of the Bayesian model offer a convenient way to optimize the trade-off between seen and unseen class accuracy. We conduct experiments on seven benchmark datasets, including a large scale ImageNet and show that our model produces promising results in the challenging GZSL setting

    Fine-Grained Zero-Shot Learning with DNA as Side Information

    Get PDF
    Fine-grained zero-shot learning task requires some form of side-information to transfer discriminative information from seen to unseen classes. As manually annotated visual attributes are extremely costly and often impractical to obtain for a large number of classes, in this study we use DNA as side information for the first time for fine-grained zero-shot classification of species. Mitochondrial DNA plays an important role as a genetic marker in evolutionary biology and has been used to achieve near-perfect accuracy in the species classification of living organisms. We implement a simple hierarchical Bayesian model that uses DNA information to establish the hierarchy in the image space and employs local priors to define surrogate classes for unseen ones. On the benchmark CUB dataset, we show that DNA can be equally promising yet in general a more accessible alternative than word vectors as a side information. This is especially important as obtaining robust word representations for fine-grained species names is not a practicable goal when information about these species in free-form text is limited. On a newly compiled fine-grained insect dataset that uses DNA information from over a thousand species, we show that the Bayesian approach outperforms state-of-the-art by a wide margin

    Fine-Grained Zero-Shot Learning with DNA as Side Information

    Get PDF
    Fine-grained zero-shot learning task requires some form of side-information to transfer discriminative information from seen to unseen classes. As manually annotated visual attributes are extremely costly and often impractical to obtain for a large number of classes, in this study we use DNA as side information for the first time for fine-grained zero-shot classification of species. Mitochondrial DNA plays an important role as a genetic marker in evolutionary biology and has been used to achieve near-perfect accuracy in the species classification of living organisms. We implement a simple hierarchical Bayesian model that uses DNA information to establish the hierarchy in the image space and employs local priors to define surrogate classes for unseen ones. On the benchmark CUB dataset, we show that DNA can be equally promising yet in general a more accessible alternative than word vectors as a side information. This is especially important as obtaining robust word representations for fine-grained species names is not a practicable goal when information about these species in free-form text is limited. On a newly compiled fine-grained insect dataset that uses DNA information from over a thousand species, we show that the Bayesian approach outperforms state-of-the-art by a wide margin
    corecore