5,897 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Sampling for Bayesian program learning

    Get PDF
    Towards learning programs from data, we introduce the problem of sampling programs from posterior distributions conditioned on that data. Within this setting, we propose an algorithm that uses a symbolic solver to efficiently sample programs. The proposal combines constraint-based program synthesis with sampling via random parity constraints. We give theoretical guarantees on how well the samples approximate the true posterior, and have empirical results showing the algorithm is efficient in practice, evaluating our approach on 22 program learning problems in the domains of text editing and computer-aided programming.National Science Foundation (U.S.) (Award NSF-1161775)United States. Air Force Office of Scientific Research (Award FA9550-16-1-0012

    Programming with a Differentiable Forth Interpreter

    Get PDF
    Given that in practice training data is scarce for all but a small set of problems, a core question is how to incorporate prior knowledge into a model. In this paper, we consider the case of prior procedural knowledge for neural networks, such as knowing how a program should traverse a sequence, but not what local actions should be performed at each step. To this end, we present an end-to-end differentiable interpreter for the programming language Forth which enables programmers to write program sketches with slots that can be filled with behaviour trained from program input-output data. We can optimise this behaviour directly through gradient descent techniques on user-specified objectives, and also integrate the program into any larger neural computation graph. We show empirically that our interpreter is able to effectively leverage different levels of prior program structure and learn complex behaviours such as sequence sorting and addition. When connected to outputs of an LSTM and trained jointly, our interpreter achieves state-of-the-art accuracy for end-to-end reasoning about quantities expressed in natural language stories.Comment: 34th International Conference on Machine Learning (ICML 2017
    • …
    corecore