279 research outputs found

    Unsupervised Texture Segmentation

    Get PDF

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Markov random field segmentation for industrial computed tomography with metal artefacts

    Get PDF
    X-ray Computed Tomography (XCT) has become an important tool for industrial measurement and quality control through its ability to measure internal structures and volumetric defects. Segmentation of constituent materials in the volume acquired through XCT is one of the most critical factors that influence its robustness and repeatability. Highly attenuating materials such as steel can introduce artefacts in CT images that adversely affect the segmentation process, and results in large errors during quantification. This paper presents a Markov Random Field (MRF) segmentation method as a suitable approach for industrial samples with metal artefacts. The advantages of employing the MRF segmentation method are shown in comparison with Otsu thresholding on CT data from two industrial objects

    Survey of contemporary trends in color image segmentation

    Full text link

    Unsupervised color image segmentation using Markov Random Fields Model

    Get PDF
    We propose a novel approach to investigate and implement unsupervised segmentation of color images particularly natural color images. The aim is to devise a robust unsu- pervised segmentation approach that can segment a color textured image accurately. Here, the color and texture information of each individual pixel along with the pixel's spatial relationship within its neighborhood have been considered for producing precise segmentation of color images. Precise segmentation of images has tremendous potential in various application domains like bioinformatics, forensics, security and surveillance, the mining and material industry and medical imaging where subtle information related to color and texture is required to analyze an image accurately. We intend to implement a robust unsupervised segmentation approach for color im- ages using a newly developed multidimensional spatially variant ¯nite mixture model (MSVFMM) using a Markov Random Fields (MRF) model for improving the over- all accuracy in segmentation and Haar wavelet transform for increasing the texture sensitivity of the proposed approach. [...]Master of Computin

    Soft Biometrics: Globally Coherent Solutions for Hair Segmentation and Style Recognition based on Hierarchical MRFs

    Get PDF
    Markov Random Fields (MRFs) are a populartool in many computer vision problems and faithfully modela broad range of local dependencies. However, rooted in theHammersley-Clifford theorem, they face serious difficulties inenforcing the global coherence of the solutions without using toohigh order cliques that reduce the computational effectiveness ofthe inference phase. Having this problem in mind, we describea multi-layered (hierarchical) architecture for MRFs that isbased exclusively in pairwise connections and typically producesglobally coherent solutions, with 1) one layer working at the local(pixel) level, modelling the interactions between adjacent imagepatches; and 2) a complementary layer working at theobject(hypothesis) level pushing toward globally consistent solutions.During optimization, both layers interact into an equilibriumstate, that not only segments the data, but also classifies it.The proposed MRF architecture is particularly suitable forproblems that deal with biological data (e.g., biometrics), wherethe reasonability of the solutions can be objectively measured.As test case, we considered the problem of hair / facial hairsegmentation and labelling, which are soft biometric labels usefulfor human recognitionin-the-wild. We observed performancelevels close to the state-of-the-art at a much lower computationalcost, both in the segmentation and classification (labelling) tasksinfo:eu-repo/semantics/publishedVersio

    Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Full text link

    Unsupervised texture segmentation

    Full text link
    corecore