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Abstract—Markov Random Fields (MRFs) are a popular
tool in many computer vision problems and faithfully model
a broad range of local dependencies. However, rooted in the
Hammersley-Clifford theorem, they face serious difficulties in
enforcing the global coherence of the solutions without using too
high order cliques that reduce the computational effectiveness of
the inference phase. Having this problem in mind, we describe
a multi-layered (hierarchical) architecture for MRFs that is
based exclusively in pairwise connections and typically produces
globally coherent solutions, with 1) one layer working at the local
(pixel) level, modelling the interactions between adjacent image
patches; and 2) a complementary layer working at the object
(hypothesis) level pushing toward globally consistent solutions.
During optimization, both layers interact into an equilibrium
state, that not only segments the data, but also classifies it.
The proposed MRF architecture is particularly suitable for
problems that deal with biological data (e.g., biometrics), where
the reasonability of the solutions can be objectively measured.
As test case, we considered the problem of hair / facial hair
segmentation and labelling, which are soft biometric labels useful
for human recognition in-the-wild. We observed performance
levels close to the state-of-the-art at a much lower computational
cost, both in the segmentation and classification (labelling) tasks.

Index Terms—Soft Biometrics, Visual Surveillance, Homeland
Security.

I. INTRODUCTION

IN visual surveillance / biometrics research, the development
of systems to work in unconstrained data acquisition

protocols and uncontrolled lighting environments is a major
ambition. The images resulting of such conditions are degraded
in multiple ways, such as blurred, shadowed, of poor resolution,
with subjects off-angle and partially occluded (Fig. 1). In these
cases, soft biometrics can be seen as an identity retrieval tool
that attenuates the decrease in performance of the classical
biometric traits (e.g., the face or the iris).

The descriptions of the facial hair and hair styles are
among the most effective soft biometric traits reported in the
literature [24]. In this scope, the pioneer analysis methods
were designed to work exclusively in good quality images of
frontal subjects. Regardless recents attempts to increase the
robustness (e.g., [29]), the ambition of working effectively
in images acquired in typical visual surveillance conditions
remains to be achieved.
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Fig. 1. Examples of images captured by an outdoor visual surveillance system,
with unconstrained acquisition conditions and protocols. Images have typically
poor resolution and are often blurred, with subjects partially occluded and
under varying poses.

Markov Random Fields (MRFs) are a classical tool for
many computer vision problems, from image segmentation [13],
image registration [8] to object recognition [4]. Among other
strengths, they provide non-causal models with isotropic
behaviour and faithfully model a broad range of local de-
pendencies. On the other way, they hardly guarantee globally
coherent solutions without using too high order cliques that
compromise the computational effectiveness of the inference
phase. Having this problem in mind, in this paper we propose a
multi-layered (hierarchical) MRF that does not use high order
cliques but still typically reaches globally coherent solutions.
As test case, we consider the hair / facial hair style analysis,
and describe an inference process composed of two phases:

1) three supervised non-linear classifiers run at the pixel
level and provide the posterior probabilities for each
image position and class of interest: hair, skin and
background. Each classifier detects one component based
on texture and shape image statistics;

2) the posteriors based on data appearance are combined
with geometric constraints and a set of model hypotheses
to feed the MRF, composed of a segmentation and
a classification layer. One layer discriminates locally
the classes of interest, while the other infers the soft
biometric labels that describe the query’s facial hair and
hair styles.

The key idea is to combine the strengths of MRFs with
groups of synthetic hypotheses that are projected onto the
input plane and guarantee the global consistency (biological
coherence) of the solution. The proposed model inherits
some insights from previous works that used shape priors to
constraint the models (e.g., [2]) and multiple layered MRFs
(e.g., [26] and [20]).
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The remainder of this paper is organized as follows: Sec-
tion II analyzes the related work. Section III details the learning
and inference phases of the proposed method. Section V
describes our experiments and the conclusions are given in
Section VI.

II. RELATED WORK

Table I overviews the literature for facial hair / hair style
analysis. Algorithms are classified according to their scope
(Hair (H) / Facial Hair (FH), Segmentation / Classification),
along with a description of the techniques / color spaces used.
The data variability factors considered are enumerated, with Y,
P and R denoting deviations in yaw, pitch and roll angles, and
A and C referring the abilities to work with unaligned data
and unconstrained hair colors. Below, methods are grouped
into three families: predominantly generative, discriminative
and hybrid.

Lee et al. [17] propose a generative model that infers a
set of hypotheses for the face, hair, and background regions.
In classification, the most reliable pixels are the information
source for mixture models that parameterise each component
and define the MRF unary costs. Still in the generative family,
Shen and Ai [23] propose a face detector to define the ROI
and consider color information (YCbCr space) to feed a MRF
used for segmentation. As post-processing, nearest neighbour
analysis enforces the homogeneity between adjacent regions.
Wang et al. [28] formulate the segmentation problem as finding
pairs of isomorphic manifolds, using a set of learning images
with the corresponding ground-truth, designated as optimal
maps. Here, queries are represented as combinations of optimal
maps. In [33] [34] Zhang et al. infer a set of probability density
functions of four typical hair colors (XYZ and HSV spaces),
learned by the expectation-maximization algorithm. Assuming
the statistical independence between color channels, they obtain
the likelihood in each color space and use a Bayesian framework
to segment hair. Finally, a simple approach is due to Dass et
al. [5], that segment the hair regions by thresholding and
use agglomerative clustering to parameterise five groups of
hairstyles, based on the proportion of hair pixels in image
patches.

Regarding methods that are predominantly discriminative,
Kae et al. [12] detect the most homogenous image patches
(super-pixels), which provide the appearance information to
a CRF. To guarantee the global coherence of the hypotheses,
a restricted Boltzmann machine encodes the global shape
priors and enforces shape constraints. Wang and Ai [27]
learn a discriminator between the hair / non-hair regions.
In classification, seven hairstyles are considered, with the
RankBoost algorithm selecting the most informative patches
and defining hairstyle similarity directly on the hair shapes.
Under the same paradigm, Rouset and Coulon [22] fuse color
(YCbCr space) to frequency information, in order to locally
discriminate between hair / non-hair pixels.

Hybrid approaches are typically based in template matching,
with the pioneer method due to Yacoob and Davis [30]. These
authors use face and eye detectors to define the ROIs. Based

on spatial and color information, a set of seeds is inferred and
region growing is used based on local homogeneity. Finally,
morphologic operators enforce connected components. Julian
et al. [11] learn a set of shape templates of the upper part
of the head, based on the boundary control points. Using
principal components analysis, they propose the concept of
eigen shape, keeping the top variability vectors that represent
the 3D head orientation and the face morphology. Hair regions
are classified at the pixel level according to a texture-analysis
strategy, generating seeds for subsequent finer parameterisations
(active contours). Ugurlu [25] use a head pose detector based
both in shape and texture, being the latter described statistically
in the HSV color space. Wang et al. [29] use a head detector
that defines a ROI, based in histogram analysis and nearest
neighbour rules. The hair length is inferred by line scanning
on the segmented hair region. A relevant gap of this work is
the fact of being only suitable for handling dark hair subjects.
Lipowezky et al. [18] start by detecting head landmarks (eyes
and mouth) to find the most homogenous image patches.
Color information (LAB and YCbCr spaces) is fused to the
Canny magnitude and to four texture descriptors (wavelets-
based), feeding a region-growing algorithm. Similarly, Krupka
et al. [16] use a head detector that defines the ROI where the
skin is detected and segmented. The differences between the
head foreground and the skin pixels provide the estimate of the
hair positions. Skin seeds are detected by thresholding, further
expanded upon homogeneity.

III. PROPOSED METHOD

For comprehensibility, the following notation is adopted:
matrices are represented by capitalized bold font and vectors
appear in bold. The subscripts denote indexes. All vectors
are column-wise. The ring symbol (e.g., x̊) denotes image
positions, while 3D positions appear in regular font (e.g., x).

A. Synthesis of 3D Models

We consider three types of 3D models: 1) head; 2) hair;
and 3) facial hair. The head models are generated as described
in [19]. Using the Young’s [31] head anthropometric survey to
obtain a group of probability density functions of human head
lengths and a basis 3D mesh, we deform the mesh according to
randomly drew target distances between pairs of vertices (lij).
Let xi be one 3D vertex and ni the normal to the surface at
that point. Let xij = xi−xj , nij = ni−nj (x.,n. ∈ R3) and
let lij be the target length (Euclidean distance) between xi and
xj . This yields a system of linear equations with inequality
constraints, enabling to find (using [3]) the magnitude of the
displacement αij on both vertices with respect to their normals
(xnew = xold +αn), such that their distance is lij and ||ααα||∞ ≤
κ0 (to avoid anatomically bizarre solutions). The top row of
Fig. 2 illustrates our population of head shapes.

Let ss = [xT1 , . . . ,x
T
tv ]T be a vector representing one head

shape, given as a triangulated mesh of tv vertices. Considering
a set of head shapes Ss = {ss,1, . . . , ss,tm}, there is evidently
strong correlation between the xi elements in those meshes,
which is attenuated if they are represented in the principal
components (PC) space:
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TABLE I
SUMMARY OF THE MOST RELEVANT METHODS TO PERFORM AUTOMATED DETECTION, SEGMENTATION AND CLASSIFICATION OF FACIAL HAIR AND HAIR
STYLES. Y, P, R , A AND C STAND FOR THE DATA VARIATION FACTORS EACH METHOD CLAIMS TO HANDLE: DEVIATIONS IN YAW, PITCH AND ROLL ANGLES,

UNALIGNED DATA AND NON-EXISTENCE OF HAIR COLOR CONSTRAINTS.

Method Year Type
Working Mode Data Variability

Color Sp. Summary
Segm. Class. Y P R A C

Yacoob and
Davis [30]

2006 H 3 3 7 7 7 7 3 RGB Gabor kernels (hair texture), dominant color, anthropometric
statistics

Lee et al. [17] 2008 H 3 7 7 7 7 7 3 RGB, LAB Graphical model
Lipowezky et
al. [18]

2008 H 3 7 7 7 7 7 3 LAB, HSV Seed detection: EDISON algorithm, edge analysis, Haar
filtering, region growing: k-means clustering

Rouset and
Coulon [22]

2008 H 3 7 7 7 7 7 3 HSV,
YCbCr

Frequency analysis (Gaussian filtering), color analysis (local
deviations)

Zhang et al. [33] 2008 H 3 7 3 3 3 7 3 HSV, XYZ Gaussian mixture model-based density estimation
Zhang et al. [34] 2009 H 3 7 3 3 3 3 3 HSV, XYZ Gaussian mixture density estimation, analysis of skin, hair

and head spatial constraints
Julian et al. [11] 2010 H 3 7 7 7 7 7 3 HSV,

YCbCr
Histogram analysis, active shape models

Wang and Ai [27] 2013 H 3 3 7 7 3 7 3 LUV Informative patches (RankBoost, SVM), graphical model,
clustering

Ugurlu [25] 2012 H, FH 3 7 3 7 7 7 3 HSV Non-linear supervised local classification
Dass et al. [5] 2013 H 3 3 3 7 7 3 3 HSV,

grayscale
Eyes detection (Adaboost), alignment (similarity transform),
Otsu thresholding, clustering

Kae et al. [12] 2013 H, FH 3 3 3 3 3 7 3 RGB Conditional random fields (local consistency), restricted
Boltzmann machines (global consistency)

Wang et al. [28] 2013 H 3 7 3 3 3 3 3 RGB Coarse local likelihood, manifold inference, refined segmen-
tation

Krupka et al. [16] 2014 H 3 7 7 7 7 7 3 RGB Background modelling (Gaussian mixture), convex hull anal-
ysis

Shen and Ai [23] 2014 H 3 3 7 7 7 7 3 YCbCr Landmarks detection (ASM), graph-cuts, histogram analysis
Wang et al. [29] 2014 H 3 3 3 3 3 3 7 Grayscale Thresholding, histogram analysis, line intersection)
Proposed Method 2016 H, FH 3 3 3 3 3 3 3 RGB, HSV,

YCbCr
Non-linear pixel classification, 3D Model projection, hierar-
chical graphical model, manifold learning

s∗s = (ss − s̄s)Tpc, (1)

where s̄s is the 3tv-dimensional mean of the elements in Ss and
Tpc is the PC transformation matrix. This way, each mesh is
represented in a feature space of a much lower dimension than
the 3tv , which accounts for the computational effectiveness of
the whole method. In our case, the head models have tv = 957,
but 50 PC coefficients represent over 99.9% of the variability.

Regarding the hair / facial hair models, we use the concept of
hair mesh from Yuksel et al. [32] and consider hair / facial hair
classes as particular cases of polygonal mesh modelling. For
simplicity, we keep a short number of hypotheses for each class:
Sh={”bald”, ”short bald”, ”short”, ”medium”, ”long fine”,
”long volume”} for the hair and Sf={”clean”, ”moustache”,
”goatee”, ”beard”} for the facial hair. As previously, all
models are generated by deforming iteratively a basis 3D
mesh (examples are shown at the bottom rows of Fig. 2).

B. Pose Hypotheses

We also consider a set of pose hypotheses. Let p = {R, t}
be a camera pose configuration, with R being the rotation
matrix and t the translation vector, i.e., p is a 6D vector
accounting for three components of rotation (yaw, pitch and
roll) and three of translation along the orthogonal axes tx, ty
and tz . P = {p1, . . . ,ptp} is the set of tp pose hypotheses
uniformly distributed over all the six degrees of freedom.

”bald” ”short””short bald” ”medium” ”long fine” ”long volume”

”clean” ”moustache” ”goatee” ”beard”

a) Head models (Ss)

b) Hair models (Sh)

c) Facial hair models (Sf )

Fig. 2. Illustration of the 3D head shapes, hair and facial hair models that
are used as the hypotheses considered in this paper.

C. Joint Head Shape / Pose Hypotheses Indexing

Given a set of tp pose and ts head shape hypotheses, it is
required to find the best joint pose / head shape configuration,
which will most likely match the query. To avoid exploring
by brute-force all tpts possibilities, a forest of binary trees
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is created at learning time, one tree per type of landmark. In
these indexing structures, hypotheses are grouped (k-means)
in branches according to the neighbourhood of the projected
landmark. The world-to-image function projects the x vertices
of a head shape hypothesis ss according to a pose configuration
p:

fw→i(x,p) = x̊ =
1

υ
A[R|t]

[
x
1

]
, (2)

where υ is the scalar projective parameter, A is the internal
camera matrix, and R and t are the pose parameters. The
retrieval time of the forest is approximately logarithmic with
respect to the number of hypotheses, which enables to generate
a large set of hypotheses without compromising the time cost
of retrieval. Additional details about this data structure are
given in [19].

Let q̊ = {̊q1, . . . , q̊tq} be a set of 2D head landmarks in a
query image. We assume that the type of each landmark τ (̊qi)
is known, i.e., the anatomic part corresponding to each q̊i is
given as input. This is a readily satisfied assumption, using the
state-of-the-art techniques for head / face landmark detection
(e.g., [10], [6], or [21]). The position of every query landmark
enters in the corresponding binary tree to retrieve the indices
of the complying hypotheses. By accumulating the complying
indices over all trees, the hypotheses are ranked in descending
order according to the likeliness they match the query. Refer
to [19] for full details about the way the most likely head shape
ŝ and pose p̂ hypotheses are inferred. Fig. 3 gives examples
of the head shape / pose estimation inference, using images
of the AFLW [15] set. The five leftmost columns contain
successful cases, whereas the rightmost column illustrates
failure cases, mostly due to ambiguities in various head shape /
pose configurations that provide too many overlapped landmark
projections.

︷ ︸︸ ︷3 7

Fig. 3. Successful / failure (rightmost column) estimates of the head shape /
pose. Most failed cases are due to ambiguities in various head shape / pose
configurations that provide too many overlapped landmark projections.

IV. SOFT LABELS INFERENCE

After inferring the query head shape ŝ and pose p̂ hypotheses,
all hair / facial hair hypotheses are projected according
to {ŝ, p̂}, to perceive how much they agree with the data

appearance terms, which implicitly constitute part of the
MRF costs. Fig. 4 gives a cohesive perspective of the two-
layered MRF we propose. One layer works at the pixel level
(segmentation layer), with a bijection between image pixels
and nodes, each one with three potential labels: hair, skin and
background. The other layer (classification) has two nodes
that represent the facial hair / hair hypotheses. During model
optimization, the interaction between both layers privilege
pixel labels that accord a parameterization of the classification
nodes and vice-versa, forcing the network to converge into
an equilibrium state where the configurations at one layer
implicitly segment data and the parameterizations in the other
layer enforce biologic coherent solutions and describe the facial
hair / hair styles.

Hair
Facial Hair

Segmentation
Layer

Classification
Layer

Unary Pixels Potentials θ(s)i (li)

Pairwise Pixels Potentials θ(s)i,j (li, lj)

Unary Hair / Facial Hair Potentials θ(c)i (li)

Pairwise Inter-Layer

Potentials θ(sc)i,j (li, lj)

Pairwise Classification Potentials θ(c)i,j (li, lj)

”Backg.”

”Skin”

”Hair”

Fig. 4. Structure of the MRF that fuses the data appearance information
(upper layer) to global constraints (bottom layer). During optimization, the the
network should converge into a balance point where the predominant labels at
the segmentation level are biologically plausible and accord globally coherent
facial hair / hair hypotheses (at the classification level).

Let G = (V, E) be a graph representing a MRF of tv vertices
V , linked by te edges E . Let ts be the number of vertices
in the segmentation layer and tc the number of vertices in
the classification layer, such that tv = ts + tc. The MRF
is a representation of a discrete latent random variable L =
{Li},∀i ∈ V , where each element Li takes one value li from a
set of labels. Let l = {l1, . . . , lts , lts+1, . . . , lts+tc} represent
one configuration of the MRF. In our model, the classification
nodes are connected to each other and to all pixel nodes, while
the pixel nodes are connected to their horizontal / vertical
neighbours. Note that the proposed model does not use high-
order cliques. Even though there is a point in Fig. 4 that
joins multiple edges, it actually represents overlapped pairwise
connections between one classification and one segmentation
node.

The energy of a configuration l of the MRF is the sum of
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the unary θi(li) and pairwise θi,j(li, lj) potentials:

E(l) =
∑
i∈V

θi(li) +
∑

(i,j)∈E

θi,j(li, lj). (3)

According to this formulation, segmenting / classifying an
image is done by inferring the random variables that minimize
its energy:

l̂ = arg min
l
E(l), (4)

where {l̂1, . . . , l̂ts} are the labels of the pixels and
{l̂ts+1, . . . , l̂ts+tc} specify the parameterizations in the classi-
fication nodes.

A. Feature Extraction

The data appearance is analyzed at the pixel level, to
distinguish between three components in the image: hair, skin
and background (any remaining information). As the red / blue
chroma values provide good separability between skin and
non-skin pixels [1] and the hair is frequently discriminated
by analysing the HSV / RGB triplets (Table I), we extract,
for each image pixel, a feature set composed of 81 elements:
{red, green and blue channels (RGB); hue, saturation and value
channels (HSV); red and blue chroma (yCbCr); LBP from the
value channel}, considering the average, standard deviation
and range statistics in square patches of side {5, 9, 15} around
the central element.

B. Learning

1) Unary Potentials: Let γ : N2 → R81 be the feature ex-
traction function that produces a vector γ(x, y) ∈ R81 for each
pixel at position (x, y). Let Γ = [γ(x1, y1), . . . , γ(xn, yn)]T

be a n× 81 matrix in a learning set used to create three non-
linear binary classification models, one for each component
ωi ∈ {”Hair”, ”Skin”, ”Background”}. Let ηi : R81 → [0, 1]
be the response of the ith model, regarded as an estimate of the
class likelihood P

(
ηi
(
γ(x, y)

)
|ωi
)

. According to the Bayes
rule, and assuming equal priors, the posterior probabilities are
given by:

P
(
ωi|ηi

(
γ(x, y)

))
=

P
(
ηi
(
γ(x, y)

)
|ωi
)

∑3
j=1 P

(
ηj
(
γ(x, y)

)
|ωj
) . (5)

In our model, the unary potentials of the vertices in
the segmentation layer are defined as θ

(s)
i (li) = 1 −

P
(
ωi|ηi

(
γ(x, y)

))
. The unary potentials in the classification

layer correspond to the agreement (exclusive-or) between
the index of the maximum posterior probability at each
point Im(x, y) = arg maxj p

(
ωj |ηj

(
γ(x, y)

))
and the 3D

model projections Ip(x, y) obtained by the world-to-image
function (2):

θ
(c)
i (li) =

1

h w

h∑
y=1

w∑
x=1

(
1− δ(Im(x, y), Ip(x, y))

)
, (6)

with δ(., .) being the Kronecker delta function, h and w the
query height and width. The rationale here is to privilege
the hair and facial hair models that provide the maximum
overlap between the responses of the non-linear models and
the projections of the corresponding 3D meshes.

2) Pairwise Potentials: There are three types of pairwise
potentials in our model: 1) between segmentation nodes; 2)
between classification nodes; and 3) between inter-layer nodes.
The pairwise potentials between segmentation nodes θ(s)i,j (li, lj)
correspond to the prior probability of observing labels li, lj
in adjacent positions of a learning set, to privilege smooth
solutions:

θ
(s)
i,j (li, lj) =

1

κ1 + P (C(x′, y′) = ωi,C(x, y) = ωj)
, (7)

where P (., .) is the joint probability, (x′, y′) and (x, y) are
4-adjacent positions, C(., .) denotes the component label {hair,
skin, background} at one position and κ1 ∈ R+ avoids infinite
costs.

The pairwise potentials between classification nodes
θ
(c)
i,j (li, lj) consider the prior probabilities of observing two

facial hair and hair hypotheses in the learning set (e.g., beards
are more probable in bald and short hair than in long / long
volume subjects).

The pairwise potentials between inter-layer nodes θ(sc)i,j (li, lj)
enforce the biological plausibility of the solution (8) and
privilege the consistency between the configurations in both
layers. This is done by penalising parameterisations of pixel
nodes that are outside of the polygons defined by the boundaries
of the projections of the head, hair and facial hair models (e.g.,
it is too costly to observe a hair pixel and a bald hypothesis).

θ
(sc)
i,j (li, lj) =


0, if δ

(
δ(li,C

′(i, lj)),

δ(ψt(xi, yi,xj ,yj), 0
)

= 0

erf
(
κ2 ψd(xi, yi,xj ,yj)

)
, otherwise

,

where ψt(xi, yi,xj ,yj) : N2 × Nn → {0, 1} is an indicator
function that assumes a unit value when the point (xi, yi) is in-
side the polygon defined by vertices {xj ,yj} = {(xj,k, yj,k)}.
ψd(xi, yi,xj ,yj) : N2×Nn → R+ is the point-to-polygon dis-
tance divided by the image diagonal length. erf(.) : R+ → [0, 1]
is a transfer function (error function) with sigmoid shape with
κ2 controlling its shape (larger values lead to farther from linear
shapes). Here, C′(i, lj) denotes the component label (hair, skin
or background) at the ith image position under the jth joint
facial hair / hair hypothesis. Fig. 5 illustrates the rationale of
this kind of costs: for two queries, the responses given by the
three non-linear classifiers are shown at the left side. The right
side shows one plausible (green square) and one unlikely (red
square) hair hypothesis, with the corresponding pairwise costs.
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Query

θ
(s)
i (li)

Hairstyle θ
(sc)
i,j (li, lj)

Fig. 5. Rationale for the inter-layer pairwise costs θ(sc)i,j (li, lj). For two
queries, the unary costs (segmentation layer) are shown at the left side, At the
right side, having one plausible (green frame) and one non-acceptable (red
frame) hair model, the inter-layer pairwise costs encode the reasonability of
fitting the data appearance term to the corresponding models (warm colors
denote high costs). During inference, the MRF converges into an equilibrium
between θ(sc)i,j (li, lj) and θ(s)i (li).

TABLE II
COMPARISON BETWEEN THE PIXEL SEGMENTATION PERFORMANCE (AFLW

SET). THE SUPERSCRIPTS GIVE THE 95% CONFIDENCE INTERVALS.

Method Overall Hair Skin Background

Proposed Method 2.87±0.03 1.99 ±0.04 3.02 ±0.03 2.95 ±0.03

Krupka et al. [16] 4.21 ±0.05 4.05 ±0.06 4.70 ±0.06 4.16 ±0.04

Lee et al. [17] 4.23 ±0.05 4.19 ±0.06 5.26 ±0.07 4.09 ±0.04

Kae et al. [12] 2.85 ±0.03 2.02 ±0.04 2.98 ±0.04 2.93 ±0.03

V. RESULTS AND DISCUSSION

A. Datasets

The LFW [9] was the main dataset used in the empirical
validation of our model, due to two reasons: 1) it contains
heterogenous images acquired indoor / outdoor, with the
degradation factors that are likely in visual surveillance
environments; and 2) it has a subset of manually segmented
images (the funnelled version) into hair, skin and background.
Additionally, the AFLW [15] set was considered for evaluating
the variations in segmentation performance with respect to
errors in the head landmarks detection phase.

B. Model Inference

All our models were optimized using the Loopy Belief
Propagation [7] algorithm. Even though it is not guaranteed
that it converges to global minimums on non sub-modular
graphs (such our models), it provides visually pleasant solutions
most of the times. As future work, we plan to evaluate the
effectiveness of our method according to more sophisticated
energy minimization algorithms (e.g., sequential tree-reweighed
message passing [14]).

Query Groud-truth Proposed [16] [17] [12]

Fig. 6. Typical hair segmentation results obtained by our model (second
column), when compared to the methods due to Krupka et al. [16] (third
column), Lee et al. [17] (forth column) and Kae et al. [12] (fifth column)

C. Segmentation

We compared the segmentation accuracy of our method
to three baseline methods: 1) a computationally inexpensive
method due to Krupka et al. [29], based on a set of seeds
from where the adjacent regions are thresholded; 2) a single
layered MRF due to Lee et al. [17], which is a particular case
of our model, with constant costs in the objects layer and in
the inter-layer edges; and 3) the method due to Kae et al. [12],
which we consider the state-of-the-art and has a rationale much
similar to our solution: it uses a random field to model the
transitions at the pixel level and a restricted Boltzmann machine
to enforce globally coherent hypotheses. Fig. 6 illustrates the
typical outputs provided by the methods compared: whereas
ours and Kae et al. methods typically produce similar results,
Krupka et al. and Lee et al. methods are frequently trapped
in local minima of their cost functions, due to not enforcing
the biological coherence of the solutions. Particularly, Krupka
et al. produce poor results when the seeds do not faithfully
represent the distributions of the components (due to textured
data). Finally, by regarding exclusively image appearance, Lee
et al.’s method often produces biological unlikely solutions,
with discontiguous skin / hair regions with boundaries having
too many number of degrees-of-freedom.

More objectively, Table II quantifies the average segmenta-
tion performance for the methods evaluated. We got slightly
better results than Kae et al. for the hair component and worse
results for the skin and background, in all cases with differences
not being statistically significant (inside the 95% confidence
intervals). The method due to Krupka et al. ranked third, yet
it was the one that most frequently produced biologically
inconsistent solutions. Also, this method performed particularly
poor in highly textured background images, where the seeds
hardly represent the high entropy in the background regions.

Another interesting feature of our method is its ability to
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Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Segmented Hypothesis Segmented Hypothesis Segmented Hypothesis Segmented Hypothesis Segmented Hypothesis

321 375 399 403 414

317 325 330 334 398

430 458 460 471 477

351 354 372 411 420

429 440 447 459 464

199 201 214 216 219

Fig. 7. Hair segmentation / hairstyle inference results obtained by the proposed method. The queries are shown at the leftmost column. For each query, the
most likely segmentation and hairstyle models are given in descending likelihood order (from left to right), showing also the cost of the optimal MRF state.

rank the plausibility of the hypotheses with respect to the
queries. This can be done by optimizing the model iteratively
and, at each step, remove the hypothesis considered optimal
in the previous iteration. Results of this ordering are shown
in Fig. 7, with the top-5 most similar hair hypotheses with
respect to queries, along with the segmentation masks for each
hypothesis. At the bottom-right corner, the cost of the solution
is given, i.e., the cost of fitting the segmentation mask in the
corresponding template.

Note that our results depend of the head landmarks to infer
the head shape and pose hypotheses (Sec. III-C). Failures at
this point introduce a bias in the way hypotheses are projected
and in the MRF unary / pairwise costs. Hence, we used a set
of ground-truth head landmarks (AFLW set) to perceive the
sensitivity to this factor, introducing inaccuracies in landmarks
detection by adding random offsets to the accurate landmarks.
Results are given in Fig. 8 (the overall accuracy is shown), with
respect to the proportion of landmarks inaccurately detected
(horizontal axis) and the relative magnitude of the offset (i.e.,
the Euclidean distance between the original and the biased
landmark positions, weighted by the image diagonal length,
vertical axis). The segmentation performance remained approx-
imately invariant when less than 20% of the head landmarks
were inaccurate. Also, the magnitude of the detections offset
was observed to play a relatively minor role in segmentation
accuracy, but, in practice, the algorithm looses its effectiveness
when more than 35% of the landmarks are inaccurate.

Proportion Landmarks Inaccurately Detected

M
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Fig. 8. Variations in segmentation performance of the proposed method with
respect to the proportion of head landmarks inaccurately detected (horizontal
axis) and the magnitude of these inaccuracies (vertical axis). The overall
accuracy is shown.

D. Identity Retrieval

This section reports the identity retrieval results in the
LFW set. A one-dimensional manifold M for the hair models
was inferred using a self-organized map fed by a feature set
composed of the concatenation of the mode label in local
3D volumes regularly sampled in the 3D hair models Sh:
M :={0: bald, 1: short bald, 2: short, 3: medium, 4: long
fine, 5: long volume}. Let I

(i)
j be the jth image from the

ith subject (j = 1, . . . ti), with ti representing the number of
images for that subject. Let ε(I(.). ): N2 →M be the inference
function (MRF) that associates one query to one hair style in
M. |ε(I(i)j )− ε(I(i)k )|1 captures the spread of the intra-subject
labels distribution, with the probability density function for
this value shown in the upper part of Fig. 9. Results are given
with respect to the κ2 parameter that controls the shape of
the transfer function (Sec. IV-B2). In all cases, it is obvious
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that large deviation values (> 3, for κ2 = 2.0) in intra-subject
labels rarely occur, which is the insight for using these labels in
identity retrieval. The bottom plot gives the corresponding hit /
penetration plots, once again with respect to the κ2 parameter.

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
5

2
=1.0

5
2
=2.0

5
2
=3.0

|ε(I(i)j )− ε(I(i)k )|1

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
2
=1.0

5
2
=2.0

5
2
=3.0

Penetration

H
it

Fig. 9. Top plot: probability density functions for the distance between intra-
subject labels |ε(I(i)j )− ε(I(i)k )|1. Bottom plot: hit / penetration plots for the
LFW data set.

VI. CONCLUSIONS

Being a classical tool in computer vision, MRFs traditionally
have difficulties in assuring globally coherent solutions without
using too-high order cliques that compromise the computational
effectiveness of the inference process. In this paper we de-
scribed a hierarchical architecture for MRFs free of high-order
cliques that still enforces globally coherent models. The idea
is to have the bottom layer working at the local (pixel) level,
while the upper layers work at the hypotheses level, providing
possible solutions for the problem. During optimization, all
layers interact and converge into an equilibrium state, where the
configuration in the bottom layer implicitly segments the data,
and the configuration in the other layers correspond to the most
likely models. As test case, we considered the segmentation
and labelling of hair / facial hair styles in degraded data, which
are important soft biometric labels for human recognition in-
the-wild. Our experiments were carried out in the challenging
LFW data set, and we observed performance similar to the
state-of-the-art methods, both in the hair segmentation and

hairstyle labelling tasks, and at a much lower computational
cost. Further, the proposed MRF architecture can be applied
with minimal adaptations to other segmentation / classification
computer vision problems, particularly in cases where the
biological (global) coherence of the solutions can be objectively
measured.
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