14 research outputs found

    Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition

    Full text link
    Recurrent Neural Networks (RNNs) are powerful sequence modeling tools. However, when dealing with high dimensional inputs, the training of RNNs becomes computational expensive due to the large number of model parameters. This hinders RNNs from solving many important computer vision tasks, such as Action Recognition in Videos and Image Captioning. To overcome this problem, we propose a compact and flexible structure, namely Block-Term tensor decomposition, which greatly reduces the parameters of RNNs and improves their training efficiency. Compared with alternative low-rank approximations, such as tensor-train RNN (TT-RNN), our method, Block-Term RNN (BT-RNN), is not only more concise (when using the same rank), but also able to attain a better approximation to the original RNNs with much fewer parameters. On three challenging tasks, including Action Recognition in Videos, Image Captioning and Image Generation, BT-RNN outperforms TT-RNN and the standard RNN in terms of both prediction accuracy and convergence rate. Specifically, BT-LSTM utilizes 17,388 times fewer parameters than the standard LSTM to achieve an accuracy improvement over 15.6\% in the Action Recognition task on the UCF11 dataset.Comment: CVPR201

    Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors

    Full text link
    We present a scalable Bayesian model for low-rank factorization of massive tensors with binary observations. The proposed model has the following key properties: (1) in contrast to the models based on the logistic or probit likelihood, using a zero-truncated Poisson likelihood for binary data allows our model to scale up in the number of \emph{ones} in the tensor, which is especially appealing for massive but sparse binary tensors; (2) side-information in form of binary pairwise relationships (e.g., an adjacency network) between objects in any tensor mode can also be leveraged, which can be especially useful in "cold-start" settings; and (3) the model admits simple Bayesian inference via batch, as well as \emph{online} MCMC; the latter allows scaling up even for \emph{dense} binary data (i.e., when the number of ones in the tensor/network is also massive). In addition, non-negative factor matrices in our model provide easy interpretability, and the tensor rank can be inferred from the data. We evaluate our model on several large-scale real-world binary tensors, achieving excellent computational scalability, and also demonstrate its usefulness in leveraging side-information provided in form of mode-network(s).Comment: UAI (Uncertainty in Artificial Intelligence) 201

    A Robust Method for Speech Emotion Recognition Based on Infinite Student’s t

    Get PDF
    Speech emotion classification method, proposed in this paper, is based on Student’s t-mixture model with infinite component number (iSMM) and can directly conduct effective recognition for various kinds of speech emotion samples. Compared with the traditional GMM (Gaussian mixture model), speech emotion model based on Student’s t-mixture can effectively handle speech sample outliers that exist in the emotion feature space. Moreover, t-mixture model could keep robust to atypical emotion test data. In allusion to the high data complexity caused by high-dimensional space and the problem of insufficient training samples, a global latent space is joined to emotion model. Such an approach makes the number of components divided infinite and forms an iSMM emotion model, which can automatically determine the best number of components with lower complexity to complete various kinds of emotion characteristics data classification. Conducted over one spontaneous (FAU Aibo Emotion Corpus) and two acting (DES and EMO-DB) universal speech emotion databases which have high-dimensional feature samples and diversiform data distributions, the iSMM maintains better recognition performance than the comparisons. Thus, the effectiveness and generalization to the high-dimensional data and the outliers are verified. Hereby, the iSMM emotion model is verified as a robust method with the validity and generalization to outliers and high-dimensional emotion characters

    Scalable nonparametric multiway data analysis

    Get PDF
    Abstract Multiway data analysis deals with multiway arrays, i.e., tensors, and the goal is twofold: predicting missing entries by modeling the interactions between array elements and discovering hidden patterns, such as clusters or communities in each mode. Despite the success of existing tensor factorization approaches, they are either unable to capture nonlinear interactions, or computationally expensive to handle massive data. In addition, most of the existing methods lack a principled way to discover latent clusters, which is important for better understanding of the data. To address these issues, we propose a scalable nonparametric tensor decomposition model. It employs Dirichlet process mixture (DPM) prior to model the latent clusters; it uses local Gaussian processes (GPs) to capture nonlinear relationships and to improve scalability. An efficient online variational Bayes Expectation-Maximization algorithm is proposed to learn the model. Experiments on both synthetic and real-world data show that the proposed model is able to discover latent clusters with higher prediction accuracy than competitive methods. Furthermore, the proposed model obtains significantly better predictive performance than the state-of-the-art large scale tensor decomposition algorithm, GigaTensor, on two large datasets with billions of entries
    corecore