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Abstract

Multiway data analysis deals with multiway ar-
rays, i.e., tensors, and the goal is twofold: pre-
dicting missing entries by modeling the inter-
actions between array elements and discovering
hidden patterns, such as clusters or communities
in each mode. Despite the success of existing
tensor factorization approaches, they are either
unable to capture nonlinear interactions, or com-
putationally expensive to handle massive data.
In addition, most of the existing methods lack a
principled way to discover latent clusters, which
is important for better understanding of the data.
To address these issues, we propose a scalable
nonparametric tensor decomposition model. It
employs Dirichlet process mixture (DPM) prior
to model the latent clusters; it uses local Gaussian
processes (GPs) to capture nonlinear relation-
ships and to improve scalability. An efficient on-
line variational Bayes Expectation-Maximization
algorithm is proposed to learn the model. Ex-
periments on both synthetic and real-world data
show that the proposed model is able to discover
latent clusters with higher prediction accuracy
than competitive methods. Furthermore, the pro-
posed model obtains significantly better predic-
tive performance than the state-of-the-art large
scale tensor decomposition algorithm, GigaTen-
sor, on two large datasets with billions of entries.

1 Introduction

Many multiple aspect data can be described by multiway
arrays, i.e., tensors. For example, an access log database
can be represented by an array with three modes (user, file,

Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2015, San Diego,
CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the
authors.

action) and patient-drug responses by an array with four
modes (person, medicine, biomarker, time). Given such
an array, we want to capture complex interactions between
the array elements and predict the missing entries (e.g., un-
known drug response); furthermore, we want to discover
the hidden patterns embedded in the data, such as clusters
or communities of the nodes or objects in each mode (e.g.,
groups of abnormal users who may threaten the system se-
curity, and sets of people with identical characteristics for
personalized medicines development).

A number of approaches have been proposed for mul-
tiway data analysis, such as CANDECOM/PARAFAC
(CP) (Harshman, 1970), Tucker decomposition (Tucker,
1966) and its generalization (Chu and Ghahramani, 2009),
and infinite Tucker decomposition (InfTucker) (Xu et al.,
2012). Although very useful, these approaches have their
own limitations. For example, the popular multilinear fac-
torization methods, such as PARAFAC and Tucker de-
composition, cannot capture the nonlinear relationships
between array elements; although nonparametric models,
such as InfTucker, can model the nonlinear relationships by
latent Gaussian processes (GPs), they suffer a prohibitive
high training cost and cannot handle massive data in real
applications; besides, most of them lack a principled way
to discover the latent clusters, which is important in data
analysis and knowledge discovery.

To address these limitations, a novel scalable nonparamet-
ric model is proposed in this paper. First, to model the
nonlinear interactions between array elements, we exploit a
tensor-variate Gaussian process (Xu et al., 2012) defined on
latent factors, where the similarity between array elements
can be described by arbitrary kernel or covariance func-
tions. Second, to scale up the model, we relax the global
GP used by Xu et al. (2012) and employ a local GP as-
sumption instead. Specifically, the whole array is sliced
into many small subarrays, each of which is generated
from a local latent tensor-variate GP. Moreover, to grasp
the hidden clusters, we employ Dirichlet Process Mixture
(DPM) prior—a nonparametric prior which can model an
undetermined number of clusters—over the latent factors.
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Finally, an efficient online variational Bayes Expectation-
Maximization (VB-EM) algorithm is developed for model
estimation. The algorithm sequentially processes each sub-
array: In the E-step, it caches global statistics and updates
them by calculating local statistics only, resulting in an ef-
ficient update of variational posteriors; in the M-step, it op-
timizes the latent factors using stochastic gradient descent.
Compared with the global GP model, i.e.,InfTucker, which
requires to store the whole array in the main memory and
calculates the huge covariance matrix of all the array ele-
ments, the online VB-EM algorithm only stores subarrays
and their covariance matrices of much smaller size, and is
therefore feasible for large array analysis.

For evaluation, the proposed approach is first examined on
three small real-world datasets where InfTucker is feasi-
ble. Our model achieves higher prediction accuracy than
InfTucker and other mulitlinear alternatives. Moreover, a
simulation shows that our approach is able to capture the
latent clusters in a tensor having nonlinear relationships.
Finally, our approach is applied to analyze two real-world
large arrays with billions of entries. The comparison with
the state-of-the-art large scale tensor decomposition algo-
rithm, GigaTensor (Kang et al., 2012), shows that our ap-
proach obtains significantly better predictive performance.

2 Background on Tensor Decomposition

We first introduce the notations. A K-mode multiway ar-
ray or tensor is denoted by M ∈ Rm1×...×mK , where
the k-th mode has a dimension of mk, corresponding to
mk nodes or objects. We use mi (i = (i1, . . . , iK)) to
denote M’s entry at location i. Using the vectorization
operation, we can stack all of M’s entries in a vector,
vec(M), with size

∏K
k=1mk by 1. In vec(M), the en-

try i = (i1, . . . , iK) of M is mapped to the entry at po-
sition j = iK +

∑K−1
i=1 (ik − 1)

∏K
k+1mk. Given a ten-

sor W ∈ Rr1×...×rK and a matrix U ∈ Rs×rk , a mode-k
tensor-matrix multiplication between W and U is denoted
by W×kU, which is a tensor of size r1× . . .×rk−1×s×
rk+1 × . . .× rK . The corresponding entry-wise definition
is (W ×k U)i1...ik−1jik+1...iK =

∑rk
ik=1 wi1...iKujik .

The Tucker decomposition of a K-mode tensor M is de-
fined by

M = [[W;U(1), . . . ,U(K)]]

= W ×1 U
(1) ×2 . . .×K U(K) (1)

where W ∈ Rr1×...×rK is the core tensor, and U(k) ∈
Rmk×rk is the k-th latent factor matrix. The Tucker de-
composition can also be represented in a vectorized form,
vec([[W;U(1), . . . ,U(K)]]) = U(1)⊗ . . .⊗U(K) ·vec(W)
where ⊗ is the Kronecker product. If we enforce r1 =
. . . = rK and restrict the core tensor W to be diagonal
(i.e., Wi1...iK 6= 0 only if i1 = . . . = iK), it reduces to
PARAFAC decomposition.

PARAFAC and Tucker decomposition are multilinear fac-
torization methods and cannot model the nonlinear interac-
tions in tensor (see Equation (1)). The infinite Tucker de-
composition (InfTucker) (Xu et al., 2012) is a nonparamet-
ric Bayesian model that maps the latent factors into an infi-
nite feature space and then performs the Tucker decompo-
sition with the core tensor W of infinite size. Based on the
feature mapping, InfTucker can capture nonlinear relation-
ships. Specifically, InfTucker is originated by assigning an
element-wise standard Gaussian prior over the core tensor
W , i.e., vec(W) ∼ N (vec(W);0, I); then by marginaliz-
ing out W , we can obtain the marginal distribution for the
tensor M:

p(M|U(1), . . . ,U(K))

= N (vec(M);0,Σ(1) ⊗ . . .⊗ Σ(K)) (2)

where Σ(k) = U(k)U(k)>. To capture nonlinear rela-
tionships, we replace each row uk

t of the latent factors
U(k) by a nonlinear feature mapping φ(uk

t ) and then ob-
tain an equivalent nonlinear covariance matrix Σ(k) =
k(U(k),U(k)) where k(·, ·) is a nonlinear covariance func-
tion. The core tensor W after feature mapping has the size
of the mapped feature vector uk

t on mode k, which could be
infinite. Because the covariance of vec(M) is the function
of the latent factors U = {U(1), . . . ,U(K)}, Equation (2)
actually defines a Gaussian process on tensor entries, where
the input are based on the corresponding latent factors U .

For an easy model interpretation, InfTucker assigns
element-wise Laplace priors p(U), which encourage sparse
estimation. Given U , a latent real-valued tensor M is
sampled from the tensor-variate GP defined in Equation
(2). Given M, the observed tensor Y is sampled from
a noisy model p(Y|M). For example, we can use pro-
bit models for binary observations and Gaussian models
for continuous observations. Thus the joint distribution is
p(Y,M,U) = p(U)p(M|U)p(Y|M).

3 Model
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Figure 1: The
graphical model
representation.

Despite the capability of modeling non-
linear relationships, InfTucker has two
bottlenecks: First, it cannot discover
the latent cluster structures. Although
it uses Laplace prior to enhance model
interpretation, the effect is limited be-
cause the latent factors do not cor-
respond to cluster memberships; and,
their numbers could be different. Sec-
ond, InfTucker cannot scale up to large
data, making it impractical for many
real-world applications. This stems
from a global GP assumption : All the
elements of the tensor M are sampled
from a Gaussian process given the latent factors U . As
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a result, computing the probability for the global M—
p(M|U(1), . . . ,U(K)) in Equation (2)– requires comput-
ing the Kronecker-product of the covariance matrices and
its inverse. The matrix inversion is prohibitively expen-
sive. Although Xu et al. (2012) use the property of the
Kronecker-product and avoid the naive computation, it still
needs to perform eigen-decomposition over the covariance
matrix for each mode, which is infeasible for a large di-
mension mk.

To overcome these bottlenecks, we propose a novel, scal-
able nonparametric model: First, we assign a Dirichlet pro-
cess mixture (DPM) (Antoniak, 1974) prior over the la-
tent factors. DPM is a nonparametric mixture model that
has unbounded number of mixture components (i.e., cluster
centres). Using DPM can neatly capture an undetermined
number of latent clusters. Then, we break the whole array
into many, smaller subarrays, where each subarray is sam-
pled from a separate, local tensor-variate GP based on the
latent factors. This local GP assumption enables fast com-
putation over subarrays and sequentially processing each
subarry enables efficient online learning algorithm. The
graphical representation of our model is shown in Figure
1.

Specifically, we assign the DPM prior over the latent fac-
tors U(k) in each mode k. For the convenience of in-
ference, we use the stick-breaking construction (Sethura-
man, 1991): An infinite collection of random variables
vk = {vk1 , vk2 , . . .} and an infinite set of atoms (i.e., cluster
centres) ηk = {ηk

1 ,η
k
2 , . . .} are first generated by

p(vk|α) =
∞∏
j=1

Beta(vkj |1, α), p(ηk) =
∞∏
j=1

N (ηk
j |0, I)

where α > 0 and the base measure is standard Gaussian.
Then, to generate the latent factors uk

t (which corresponds
to t-th row in U(k)), a cluster assignment variable zkt is
first sampled and uk

t is generated according to the assigned
cluster center,

p(uk
t , z

k
t |vk,ηk) = p(zkt |vk)p(uk

t |zkt ,ηk)

=

∞∏
j=1

(
πj(vk)

)1(zk
t =j) · N (uk

t |ηk
zk
t
, λkI)

where πj(vk) = vkj
∏j−1

i=1 (1 − vki ) and λk is the variance
parameter which controls how far away uk

t is from the clus-
ter center. We use zk = {zk1 , . . . , zkmk

} to denote the set of
cluster assignment variables in mode k.

Given the latent factors U = {U(1), . . . ,U(K)}, we use
Gaussian process to generate the observed array. As we
mentioned earlier, the global GP used by InfTucker will
cause a prohibitive high computational cost and therefore
we use the local GP assumption instead: We break the
whole array Y into many smaller subarrays {Y1, . . . ,YN};
for each subarray Yn, a latent real-valued subarray Mn is

generated by a local GP based on the corresponding subset
of the latent factors Un = {U(1)

n , . . . ,U
(K)
n } and the noisy

observation Yn is sampled according to Mn,

p(Yn,Mn|U) = p(Mn|Un)p(Yn|Mn)

= N (vec(Mn);0,Σ
(1)
n ⊗ . . .⊗ Σ(K)

n ))p(Yn|Mn)

where Σ
(k)
n = k(U

(k)
n ,U

(k)
n ) is the k-th mode covariance

matrix over the sub-factors Un.

Now, the joint probability of our model is given by

p(U , {zk,vk,ηk}Kk=1, {Mn,Yn}Nn=1)

=

K∏
k=1

p(vk|α)p(ηk)

mk∏
t=1

p(zkt |vk)p(uk
t |zkt ,ηk)

·
N∏

n=1

p(Mn|U(1)
n , . . . ,U(K)

n )p(Yn|Mn). (3)

Compared with the joint probability of InfTucker, the joint
probability of our model gets rid of the global factor
p(M|U(1), . . . ,U(K)) and uses the product of smaller lo-
cal factors

∏N
n=1 p(Mn|U(1)

n , . . . ,U
(K)
n ) instead. These

local factors requires much less memory and processing
time than the global factor. More important, the additive
nature of these local factors in the log domain enables us to
design an efficient online learning algorithm.

4 Model Estimation

Now, we present our online variational Bayes Expectation
Maximization (VB-EM) algorithm for model estimation, as
described in Algorithm 1. We randomly shuffle the subar-
rays and sequentially process each subarray with VB-EM:
In the E-step, we use variational approximation and, in
the M-step, we apply stochastic gradient descent (SGD) to
maximize the variational lower bound over the latent fac-
tors. The details are given in the following paragraphs.

4.1 Variational approximation

We use variational inference to approximate the posteriors
of the latent variables ({vk}k, {ηk}k, {zk}k, {Mn}n)—
the random variables for stick-breaking construction,
the cluster centres, the cluster assignments and the la-
tent subarrays. Specifically, we use a fully factor-
ized distribution

∏
k q(v

k)q(ηk)q(zk)
∏

n q(Mn) to ap-
proximate p({vk,ηk, zk}Kk=1, {Mn}Nn=1|{Yn}Nn=1,U)—
the exact posterior. The variational inference minimizes
the Kullback-Leibler (KL) divergence between the approx-
imate and the exact posteriors by coordinate descent. The
variational update for each q(Mn) is the same as that for
q(M) in (Xu et al., 2012). The other latent variables come
from the DPM prior, and they are infinite (e.g., vk and ηk)
or have infinite number of supports (e.g., zk ). Hence we
introduce a truncated variational posterior proposed by Blei
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et al. (2006): We set a truncation level Tk for each mode k
and set q(vkTk

= 1) = 1 so that q(zkt > Tk) = 0. There-
fore, each q(zkt ) has only Tk supports and we only need to
consider Tk posteriors for vk and ηk. The variational dis-
tributions q(zkt ), q(v

k
j ) and q(ηk

j )(1 ≤ t ≤ mk, 1 ≤ j ≤
Tk) are then given by

q(zkt ) = Multi(zkt |φkt1, . . . , φktTk
), (4)

q(vkj ) = Beta(vkj |γkj1, γkj2), (5)

q(ηk
j ) = N (ηk

j |µk
j , s

k
j I). (6)

The parameters of the distributions are calculated by

φktj ∝ exp
(
Eq

[
log vkj

]
+

j−1∑
i=1

Eq

[
log(1− vki )

]
− 1

2λk
Eq

[
‖ηk

j ‖2
]
+

1

λk
uk
t

>Eq

[
ηk
j

] )
, (7)

γkj1 = 1 +

mk∑
t=1

φktj , γkj2 = α+

mk∑
t=1

Tk∑
i=j+1

φkti , (8)

skj =
1

1 + λk
−1 ∑mk

t=1 φ
k
tj

,µk
j =

∑mk

t=1 φ
k
tju

k
t

λk +
∑mk

t=1 φ
k
tj

. (9)

The moments required to calculate the parameters are
given by Eq

[
log vkj

]
= ψ(γkj1) − ψ(γkj1 + γkj2),

Eq

[
log(1− vkj )

]
= ψ(γkj2) − ψ(γkj1 + γkj2), Eq

[
ηk
j

]
=

µk
j and Eq

[
‖ηk

j ‖2
]

= ‖µk
j ‖2 + rks

k
j , where ψ(x) =

d
dx ln Γ(x).

4.2 Efficient online VB-EM algorithm

Given the variational distributions, we can estimate the la-
tent factors U by maximizing the expected log joint proba-
bility,

Eq

[
log(p(U , {zk,vk,ηk}Kk=1, {Mn,Yn}Nn=1))

]
, (10)

which is also a variational lower bound for the log marginal
likelihood of the data. The traditional variational EM algo-
rithm can be applied here: In the E-step, we update the vari-
ational posteriors and then in the M-step we can maximize
(10) to update the latent factors (e.g., by using L-BFGS).
However, in each iteration the algorithm requires to pass all
the subarrays. It can therefore be slow to apply for large ar-
rays because we need generate a large number of subarrays
for analysis, and it is not naturally suited to dynamic arrays
with increasing size over time. Therefore, we propose an
online VB-EM algorithm for efficient model inference and
it turns out our algorithm leads to a better performance for
our problem.

Specifically, we randomly shuffle the subarrays and se-
quentially process each subarray with VB-EM. For each
subarray Yn, we use variational inference to update the

approximate posteriors of the local variables (i.e., the la-
tent subtensor Mn and the cluster assignment variables
{zkInk

}k for the sub-factors Un, where Ink is the index set
of Un in k-th mode), and the global variables (i.e., {vk}k
and {ηk}k) (E-step); then we update the sub-factors Un us-
ing stochastic gradient descent (SGD) (M-step).

The naive computation for q(vk) and q(ηk) by Equations
(8) and (9) will involve all the factors U(k) in k-th mode
and all the statistics from q(zk) (i.e., {φktj}t,j), therefore is
low efficient. To improve the efficiency, we observe that the
calculation for each q(vkj ) and q(ηk

j ) relies on three statis-
tics,

Ψk
1 =

mk∑
t=1

φktj , Ψk
2 =

mk∑
t=1

Tk∑
i=j+1

φkti, Ψk
3 =

mk∑
t=1

φktju
k
n

These statistics are additive. The processing of Yn only
changes a subset of statistics {φktj : t ∈ Ink}; the summa-
tion over the remaining statistics will not change and there
is no need to compute it again. Therefore, we can cache
the three global statistics, and calculate the corresponding
local statistics with respect to Yn:

Ψk
1n =

∑
t∈Ink

φktj ,Ψ
k
2n =

∑
t∈Ink

Tk∑
i=j+1

φkti,Ψ
k
3n =

∑
t∈Ink

φktju
k
t .

After computing {φktj : t ∈ Ink} for q(zkInk
) by (7), we

update {Ψk
1 ,Ψ

k
2 ,Ψ

k
3} by simply subtracting the old local

statistics and then adding the new ones, i.e.,

Ψk
1

(new)
= Ψk

1 −Ψk
1n

(old)
+Ψk

1n

(new)
, (11)

Ψk
2

(new)
= Ψk

2 −Ψk
1n

(old)
+Ψk

1n

(new)
, (12)

Ψk
3

(new)
= Ψk

3 −Ψk
1n

(old)
+Ψk

1n

(new)
. (13)

Then we can update q(vk) and q(ηk) accordingly based
on the global statistics. This procedure can repeat during
the iterations in the E-step to cyclically update local varia-
tional posterior q(zkInk

) and the global variational posteri-
ors q(vk) and q(ηk). The calculation only involves statis-
tics which associate with the subarray and hence is much
more efficient than the naive computation.

Given the required variational posteriors, we perform SGD
to optimize U . First, we derive the expected log like-
lihood function with respect to U according to Equation
(10), then rearrange it into to a summation form f(U) =∑N

n=1 gn(U), where

gn(U) =
1

N
Eq

[
log(p(U|{zk,ηk}Kk=1))

]
+ Eq [log(p(Mn|U))] .

Then for each subarray Yn, we have the following update

Un = Un + ρ
∂gn
∂Un

. (14)
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Note that we can alternatively update the global factors
U using the gradient of gn with respect to U . However,
this empirically shows worse performance because only the
sub-factors Un involve in the expected log likelihood of the
subarray (i.e., Eq [log(p(Mn|Un))]) and their updates can
be effectively guided by the observed data; the remaining
factors only appear in the terms regarding priors; their up-
dates are dominated by those terms and hence may intro-
duce extra noise. Therefore, we only update the sub-factors
Un and calculate the gradient of gn with respect to Un—this
also reduces computation. To do so, we rewrite gn as the
function of Un,

gn(Un) =
1

N
Eq

[
log(p(Un|{zkIkn

,ηk}Kk=1))
]

+ Eq [log(p(Mn|Un))] + const

=
K∑

k=1

∑
t∈Ikn

−λk
2
Eq

‖uk
t −

Tk∑
j=1

1(zkt = j)ηk
j ‖2


+ ‖[[Eq [Mn] ; (Σ

(1)
n )−

1
2 , . . . , (Σ(K)

n )−
1
2 ]]‖2

+
K∑

k=1

mn

mn,k
log |Σ(k)

n |+ tr
(
Λ−1

n Υn

)
+ const (15)

where mn,k is the dimension of k-th mode in Yn, mn =∏K
k=1mn,k, Λn = Σ

(1)
n ⊗ . . . ⊗ Σ

(K)
n , Σ

(k)
n =

k(U
(k)
n ,U

(k)
n ) is the k-th mode covariance matrix over Un,

and Υn is the statistics computed in the variational E-step.

The gradient ∂gn
∂Un

has a form similar to that of the expected
log joint probability with respect to global latent factors U
in InfTucker. The main difference is from the terms regard-
ing the DPM prior, of which the gradient is trivial. Hence
we omit the detailed equation and refer the detail to the pa-
per by (Xu et al., 2012).

4.3 Algorithm complexity

The time complexity to calculate the global statistics is
O(

∑K
k=1mkrkTk) where mk, rk and Tk are the dimen-

sion, the number of latent factors, and the variational trun-
cation level for DP inference in k-th mode, respectively.
Note that this calculation is only performed once in the be-
ginning, and then the global statistics are cached and effi-
ciently updated based on the change of the local statistics.
In the processing of each subarray, the time complexity is
O(

∑K
k=1mkrkTk +m3

k +mkm) where mk is the number
of nodes of the subarray in k-th mode and m =

∏K
k=1mk.

When we set identical mk for all k, the time complexity
becomes O(m1+ 1

K ). Given N subarrays, the time com-
plexity for the online VB-EM algorithm is O(Nm1+ 1

K ),
nearly linear in the number of entries in each small subar-
ray. For comparison, the time complexity for InfTucker is
O(

∑K
k=1m

3
k+mkm), making this global GP model infea-

sible for large mk.

Algorithm 1 Online VB-EM algorithm ({Y1, . . .YN}, ρ)
Random shuffle subarrays in {Y1, . . .YN}.
Calculate and cache the global statistics {Ψk

1 ,Ψ
k
2 ,Ψ

k
3}k

for each mode (k = 1 . . .K).
for n=1 to N do

Pick up n-th subarray Yn

E step:
repeat

Update the local posteriors q(Mn), {q(zkInk
)}k

Calculate the local statistics {Ψk
1n,Ψ

k
2n,Ψ

k
3n}k

Update the global statistics by Equations (11)–(13)
Update the global posteriors {q(vk), q(ηk)}k
based on the up-to-date global statistics.

until convergence or maximum iteration number is
reached
M step:
Update the sub-factors Un: Un = Un + ρ∂gn(Un)

end for
return the whole factors U , the posterior of cluster cen-
tres {q(ηk)}k, and cluster assignment {q(zk)}k.

The space complexity of the online VB-EM algorithm is
O(

∑K
k=1 rkTk +mk(rk + Tk) +m2

k +m) , including the
storage of the cluster centres, the latent factors and their
cluster assignments, and one subarray and its covariance
matrices in each mode. By contrast, the global GP model
needs to store the whole array and their covariance matri-
ces and thus lead to a prohibitively high space complexity
O(

∑K
k=1m

2
k +m).

4.4 Strategies to generate subarrays

Here we discuss three ways to generate subarrays used in
training. In the experiments, we simply make these sub-
arrays in the same size. i) Uniform sampling. This is the
simplest method: We just uniformly sample a set of indexes
of size mk, for each mode k, to define a subarray. To make
multiple subarrays, we just repeat this process so that each
subarray has the same size. ii) Weighted sampling. This
strategy exploits the information in the data. It samples a
set indexes in each mode, based on weights, rather than uni-
formly. The weights are calculated from the degree of the
indexes. The degree of an index is defined as the number of
nonzero entries containing that index. The weighted sam-
pling strategy gives more weights to those higher degree
indexes so that the sampled subarrays may contain more
nonzero elements, as compared with the uniform sampling
strategy. iii) Grid sampling. It ensures the coverage of ev-
ery element of the whole array. Specifically, we randomly
permute the indexes in each mode, then partition the per-
muted indexes into multiple segments with the same size,
and repeat this process for each mode to generate a grid.
In this grid, each (hyper-)cube contains a subarray. We can
repeat this whole process to generate more subarrays.
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4.5 Predicting array entries by bagging

To predict the values of unknown entries, the global GP
model needs to infer the posterior distribution of the whole
latent array q(M). For large arrays, this inference is com-
putationally prohibitive. To overcome this hurdle, we apply
a bagging strategy which learns the prediction by simply
aggregating predictions on a collection of small subarrays.
Because our approach can quickly provide predictions on
the small subarrays, it achieves fast final predictions. Note
that Bagging (Hastie et al., 2001) has been widely used
to improve prediction accuracy for many machine learn-
ing methods such as neural networks and decision trees.
For our model, we first generate subarrays and find their
corresponding latent factors, then use them to learn predic-
tive means of the unknown elements following the global
GP prediction algorithm (but on the subsets here), and fi-
nally aggregate the predictive means by averaging. As we
sample subarrays from the whole array, our prediction can
be viewed as nonparametric bootstrap prediction (Fushiki
et al., 2005).

5 Experiment
5.1 Missing value prediction

Datasets. First, two binary datasets, Digg and Enron,
and one continuous dataset, Alog were used for exam-
ination. Digg is extracted from a social news website
digg.com and describes a three-way interaction (news,
keyword, topic). It contains 581 × 124 × 48 elements,
of which 0.024% are non-zero. Enron, extracted from the
Enron email dataset (www.cs.cmu.edu/~./enron/),
depicts a three-way relationship (sender, receiver, time).
Enron is of size 203 × 203 × 200 where 0.01% elements
are non-zero. Alog is extracted from an access log from a
file management system. It records three-way interactions
(user, action, resource) and contains 200 × 100 × 200 ele-
ments, of which 0.33% are nonzeros.

Competing methods. We compared our approach with the
following tensor decomposition methods: PARAFAC, non-
negative PARAFAC (N-PARAFAC) (Shashua and Hazan,
2005a), high order SVD (HOSVD) (Lathauwer et al.,
2000), Tucker and InfTucker. We also implemented the
InfTucker model with a DPM prior, denoted by InfTucker-
DPM, which extends InfTucker by assigning DPM priors
over the latent factors.

Parameter settings. The number of latent factors was cho-
sen from the set {3, 5, 8, 10}. All the methods were evalu-
ated by a 5-fold cross validation: The nonzero entries were
randomly split into 5 folds and 4 folds were used for train-
ing; the remaining non-zero entries and 0.1% zero entries
were used for testing so that the evaluation will not be
dominated by the large portion of zero entries. RBF ker-
nels were consistently employed in InfTucker, InfTucker-
DPM and our approach, with parameters chosen by an-

other cross-validation and so did the hyperparameter of the
Laplace prior of InfTucker. In the proposed approach, the
size of subarray is set to 40 × 40 × 40 for all the three
datasets; three sampling strategies described in Section 4.4
were used and 500 subarrays were generated by each strat-
egy; the learning rate ρ in Equation (14) was tuned from
the range {10−5, 10−6, 10−7, 10−8}. For both InfTucker-
DPM and our approach, the variational truncation level in
each mode is set to one-tenth of the dimension of each
mode. For bagging prediction, we randomly sampled 10
subarrays, each with a size of 40×40×40. The area-under-
curve (AUC) is used to evaluate performance on Digg and
Enron, and the mean squared error (MSE) on Alog. We then
report the average results from the 5-fold cross validation.

Results. As shown in Figure 2, both InfTucker-DPM and
our model achieve higher prediction accuracy than Inf-
Tucker and the other alternatives. A t-test shows that
InfTucker-DPM and our approach significantly outperform
InfTucker (p < 0.05) in almost all the cases. The re-
sults demonstrate that DPM priors can benefit the predic-
tion task. Moreover, our local GP based model and the
online VB-EM algorithm can achieve comparable or some-
times even better results than the model based on global GP,
i.e., InfTucker-DPM.

We also examined the bagging prediction compared with
the global GP prediction; the latter requires to infer the
whole latent array and is therefore infeasible for large data.
For example, when the number of latent factors is 5, the
averaged AUCs are 0.83 vs 0.85 on Digg, and 0.94 vs 0.92
on Enron; the averaged MSEs are 1.78 vs 1.79 on Alog.
It turns out that given the latent factors estimated by the
online algorithm, the bagging prediction achieves similar
accuracy but with high efficiency.

5.2 Latent cluster discovery

To examine the ability of discovering latent clusters, we
simulated a synthetic tensor of size 100×100×100. First, a
set of latent factors {U(1),U(2),U(3)} were sampled from
a Gaussian mixture model (GMM) and then the tensor el-
ements were sampled based on the latent factors. We set
the number of the mixture components in GMM to 3, with
centers located at {(2, 2), (2,−2), (−2,−2)} and the co-
variance matrix for each component to 0.5I. The selecting
probability of each component is 1

3 . Given u1
i ,u

2
j ,u

3
k, a

tensor element yijk was generated by a nonlinear function:

xijk = ‖u1
i − u2

j‖2 + ‖u1
i − u3

k‖2 + ‖u2
j − u3

k‖2,

yijk = log(x
3
2

ijk + xijk + 1)− cos(
√
xijk) + εijk,

where εijk is a random noise sampled from a Gaussian dis-
tribution N (0, 10). Given the data, we ran our approach to
recover the cluster structure of the latent factors. For com-
parison, we also ran PARAFAC and InfTucker, and then
used k-means to find clusters. We set k = 3, the exact
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Figure 2: The prediction results on small datasets. The results are averaged over 5 runs. OURSU, OURSW and OURSG refer
to our method based on the uniform, weighted, and grid sampling strategies, respectively.

number of clusters; however, it may not be trivial to iden-
tify the number of clusters in real applications. Both Inf-
Tucker and our model used RBF kernel. In our approach,
the size of subarray was set to 10×10×10; 1000 subarrays
were sampled with the uniform sampling strategy; and the
truncation level was set to 10 for each mode. Figure 3 dis-
plays the estimated clusters of all the methods in the first
mode. The cluster regions are filled with different back-
ground colors, where the marker of each point (i.e., latent
factor) exhibits its ground-truth class (i.e., the GMM com-
ponent from which it is originally sampled). In Figure 3a,
the points of different classes are largely mixed, implying
that PARAFAC failed to capture the nonlinear relationships
in data. In Figure 3b, points of the same class stay contin-
uously, indicating that InfTucker successfully captures the
nonlinear relationships. However, the points are distributed
almost uniformly and the cluster structures is difficult to re-
veal. As a result, the k-means algorithm cannot identify ap-
propriate cluster centres. In Figure 3c, the points are well
separated into three clusters. Although with a few missing
assignments, the results demonstrates that our approach not
only captured the nonlinear relationships but also identified
the latent cluster structures.

For a quantitative evaluation, we calculated the purity of the
estimated clusters (Zhao and Karypis, 2002). The purity is
calculated by Purity(Ω,C) = 1

N

∑
k maxj|ωk ∩ cj| where

Ω = {ω1, . . . , ωK} is the cluster assignment determined
by the algorithm and C = {c1, . . . , cJ} is the ground-truth
classes. Higher purity means better cluster quality; a per-
fect cluster assignment has a purity of one. The purity of
the estimated clusters based on the three methods are listed
in Table 1. As we can see, our model obtains the highest
purity, implying the best recovered cluster structure.

Table 1: The purity of the estimated clusters.
Method Mode 1 Mode 2 Mode 3

PARAFAC 0.42 0.44 0.42
InfTucker 0.62 0.69 0.75
Our model 0.84 0.84 0.88

5.3 Large multiway array analysis

Two large real datasets were employed for analysis: (1)
DBLP, of size 10K × 200 × 10K, depicts a three-way
bibliography relationship (author, conference, keyword).

We parsed the original DBLP xml file (http://dblp.
uni-trier.de/xml/) and selected the 10K most pro-
lific authors, the 200 most popular conferences and 10K
most common keywords to construct a binary-valued ten-
sor. (2) ACC , of size 3K×150×30K, describes the (user,
action, resource) interaction and was extracted from access
logs of a source code version control system in a large com-
pany. We selected the 3K most active users, the 30K most
popular resources for analysis. The count of each inter-
action is highly varied (i.e., from just once to millions).
Hence we took logarithm and obtained a real-valued ten-
sor. In total, DBLP contains 20 billions of elements and
ACC has 13.5 billions of entries. To the best of our knowl-
edge, there is no nonparametric models which can deal with
tensor data at this scale.

Our approach was compared with the state-of-the-art large
scale tensor decomposition method, GigaTensor. GigaTen-
sor is developed with the Map-Reduce framework. We used
the original GigaTensor software package and its default
settings. We ran GigaTensor on a Hadoop cluster with 16
computers and our online algorithm on a single computer.

The number of latent factors were set to 3 for both datasets.
The DBLP and ACC datasets contain 0.001% and 0.009%
nonzero elements, respectively. We randomly chose 80%
of nonzero entries for training, and then sampled 50 test
datasets from the remaining entries. Each test dataset com-
prises 200 nonzero elements and 1, 800 zero elements. For
prediction of our method, we randomly sampled 10 subar-
rays of size 100 × 100 × 100 for bagging. We used RBF
kernel; to tune the kernel parameters, we drew a subarray of
size 2000×150×2000 for each training array and then per-
formed cross-validation to obtain the best parameters. The
size of subtensor used by our online algorithm were chosen
from {100×100×100, 125×125×125, 150×150×150}.
To identify the number of subtensors, during the cross vali-
dation, we chose the number from {1, 2, 3}×P where P is
the number of subtensors which can cover the same quan-
tity of entries in the whole array. The learning rate were
chosen from {10−7, 10−8, 10−9}.

Figure 4 shows the AUC and MSE for DBLP and ACC
datasets. It turns out that regardless of the subarray sam-
pling strategy, our model outperforms GigaTensor signifi-
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Figure 4: Prediction results on large multiway data. The
results are averaged over 50 test datasets.

cantly. It improves the AUC of GigaTensor on DBLP by
12%, and the MSE on ACC by 53% on average. Because
GigaTensor is a distributed algorithm for PARAFAC de-
composition, the results actually show that our model con-
sistently outperforms PARAFAC in large arrays.

As to the speed, GigaTensor is several times faster than our
model. The reason is that GigaTensor can exploit multi-
ple computational units in a cluster and perform parallel
decomposition while our model was carried out on a sin-
gle computer. However, our method makes nonparametric
model—a more powerful tool— feasible for large multi-
way data analysis and thus practical for real applications.

6 Related work

Multiway data is common in real applications. Many ex-
cellent works have been proposed based on the multilin-
ear factorization approaches, such as (Shashua and Hazan,
2005b; Chu and Ghahramani, 2009; Acar et al., 2011; Hoff,
2011, 2013; Kang et al., 2012; Yang and Dunson, 2013;
Zhou et al., 2013). However, the interactions and patterns
in multiway data can be complex, and it is natural to ex-
ploit powerful nonparametric models. InfTucker (Xu et al.,
2012, 2013) is a nonparametric model based on GP and can
capture the nonlinear relationships. Our work enhances In-
fTucker by introducing DPM to discover the latent cluster
patterns. In theory, our work, as well as InfTucker, can
be considered as instances of random function prior mod-
els (Lloyd et al., 2012) .Recently, nonparametric modeling
has also been used to infer the appropriate number of latent

factors for CP decomposition and its extension, such as the
works by Rai et al. (2014, 2015).These works place multi-
plicative gamma process prior (Bhattacharya and Dunson,
2011) over the factor matrices, which also carry out over-
lapping clustering of the factors during the inference.

The global GP model is impractical for large multiway ar-
rays due to a prohibitive high computation cost. Hence
we resort to a relaxed local GP assumption. Many works
have been proposed for training of local GPs. For exam-
ple, Rasmussen and Ghahramani (2002) proposed an infi-
nite GP mixture model; Kim et al. (2005) used partitions of
GP to analyze spatial data; Gramacy and Lee (2008) pro-
posed treed GP; and Dunson and Fox (2012) proposed mul-
tiresolution GP coupling nestedly partitioned GPs for time-
series analysis. However, these great works focus on GP
models with known input locations. Our work uses local
GPs to boost the latent GP model on large multiway arrays,
where the input is unkown (and need to be estimated) and
the model estimation could be challenging. Recently, Zhe
et al. (2013) also uses local GP to scale up InfTucker in a
computer cluster environment, but they focus on scalability
and do not consider the task of latent cluster discovery.

Our online VB-EM algorithm is also related to online
learning of DP or Hierarchical DP (Wang et al., 2011;
Bryant and Sudderth, 2012; Hughes and Sudderth, 2013;
Lin, 2013). While these excellent works focus on DP, our
algorithm is actually designed for the inference of a com-
bination of latent DP and GP model.

7 Conclusion
In this paper, we present a scalable nonparametric Bayesian
model, and an efficient online VB-EM learning algorithm
for large multiway data analysis. In the future work, we
plan to develop a distributed learning algorithm, like Gi-
gaTensor on MapReduce, to further scale up our model to
even larger data, say, trillions of elements.
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