1,720 research outputs found

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    On the Inefficiency of the Uniform Price Auction

    Full text link
    We present our results on Uniform Price Auctions, one of the standard sealed-bid multi-unit auction formats, for selling multiple identical units of a single good to multi-demand bidders. Contrary to the truthful and economically efficient multi-unit Vickrey auction, the Uniform Price Auction encourages strategic bidding and is socially inefficient in general. The uniform pricing rule is, however, widely popular by its appeal to the natural anticipation, that identical items should be identically priced. In this work we study equilibria of the Uniform Price Auction for bidders with (symmetric) submodular valuation functions, over the number of units that they win. We investigate pure Nash equilibria of the auction in undominated strategies; we produce a characterization of these equilibria that allows us to prove that a fraction 1-1/e of the optimum social welfare is always recovered in undominated pure Nash equilibrium -- and this bound is essentially tight. Subsequently, we study the auction under the incomplete information setting and prove a bound of 4-2/k on the economic inefficiency of (mixed) Bayes Nash equilibria that are supported by undominated strategies.Comment: Additions and Improvements upon SAGT 2012 results (and minor corrections on the previous version

    Tight Bounds for the Price of Anarchy of Simultaneous First Price Auctions

    Get PDF
    We study the Price of Anarchy of simultaneous first-price auctions for buyers with submodular and subadditive valuations. The current best upper bounds for the Bayesian Price of Anarchy of these auctions are e/(e-1) [Syrgkanis and Tardos 2013] and 2 [Feldman et al. 2013], respectively. We provide matching lower bounds for both cases even for the case of full information and for mixed Nash equilibria via an explicit construction. We present an alternative proof of the upper bound of e/(e-1) for first-price auctions with fractionally subadditive valuations which reveals the worst-case price distribution, that is used as a building block for the matching lower bound construction. We generalize our results to a general class of item bidding auctions that we call bid-dependent auctions (including first-price auctions and all-pay auctions) where the winner is always the highest bidder and each bidder's payment depends only on his own bid. Finally, we apply our techniques to discriminatory price multi-unit auctions. We complement the results of [de Keijzer et al. 2013] for the case of subadditive valuations, by providing a matching lower bound of 2. For the case of submodular valuations, we provide a lower bound of 1.109. For the same class of valuations, we were able to reproduce the upper bound of e/(e-1) using our non-smooth approach.Comment: 37 pages, 5 figures, ACM Transactions on Economics and Computatio

    Auctions with Severely Bounded Communication

    Full text link
    We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare- and profit-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove non-surprising properties of these kinds of auctions, e.g., that in optimal mechanisms bidders simply report the interval in which their valuation lies in, as well as some surprising properties, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor
    • …
    corecore