50,015 research outputs found

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot

    Optimising ITS behaviour with Bayesian networks and decision theory

    Get PDF
    We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system

    Towards a general framework for an observation and knowledge based model of occupant behaviour in office buildings

    Get PDF
    This paper proposes a new general approach based on Bayesian networks to model the human behaviour. This approach represents human behaviour withprobabilistic cause-effect relations based not only on previous works, but also with conditional probabilities coming either from expert knowledge or deduced from observations. The approach has been used in the co-simulation of building physics and human behaviour in order to assess the CO 2 concentration in an office.Comment: IBPC 2015 Turin , Jun 2015, Turin, Italy. 201

    The application of Bayesian change point detection in UAV fuel systems

    Get PDF
    AbstractA significant amount of research has been undertaken in statistics to develop and implement various change point detection techniques for different industrial applications. One of the successful change point detection techniques is Bayesian approach because of its strength to cope with uncertainties in the recorded data. The Bayesian Change Point (BCP) detection technique has the ability to overcome the uncertainty in estimating the number and location of change point due to its probabilistic theory. In this paper we implement the BCP detection technique to a laboratory based fuel rig system to detect the change in the pre-valve pressure signal due to a failure in the valve. The laboratory test-bed represents a Unmanned Aerial Vehicle (UAV) fuel system and its associated electrical power supply, control system and sensing capabilities. It is specifically designed in order to replicate a number of component degradation faults with high accuracy and repeatability so that it can produce benchmark datasets to demonstrate and assess the efficiency of the BCP algorithm. Simulation shows satisfactory results of implementing the proposed BCP approach. However, the computational complexity, and the high sensitivity due to the prior distribution on the number and location of the change points are the main disadvantages of the BCP approac
    corecore