618,335 research outputs found
Bayesian computational methods
In this chapter, we will first present the most standard computational
challenges met in Bayesian Statistics, focussing primarily on mixture
estimation and on model choice issues, and then relate these problems with
computational solutions. Of course, this chapter is only a terse introduction
to the problems and solutions related to Bayesian computations. For more
complete references, see Robert and Casella (2004, 2009), or Marin and Robert
(2007), among others. We also restrain from providing an introduction to
Bayesian Statistics per se and for comprehensive coverage, address the reader
to Robert (2007), (again) among others.Comment: This is a revised version of a chapter written for the Handbook of
Computational Statistics, edited by J. Gentle, W. Hardle and Y. Mori in 2003,
in preparation for the second editio
Approximate Bayesian Computational methods
Also known as likelihood-free methods, approximate Bayesian computational
(ABC) methods have appeared in the past ten years as the most satisfactory
approach to untractable likelihood problems, first in genetics then in a
broader spectrum of applications. However, these methods suffer to some degree
from calibration difficulties that make them rather volatile in their
implementation and thus render them suspicious to the users of more traditional
Monte Carlo methods. In this survey, we study the various improvements and
extensions made to the original ABC algorithm over the recent years.Comment: 7 figure
Bayesian Methods for Exoplanet Science
Exoplanet research is carried out at the limits of the capabilities of
current telescopes and instruments. The studied signals are weak, and often
embedded in complex systematics from instrumental, telluric, and astrophysical
sources. Combining repeated observations of periodic events, simultaneous
observations with multiple telescopes, different observation techniques, and
existing information from theory and prior research can help to disentangle the
systematics from the planetary signals, and offers synergistic advantages over
analysing observations separately. Bayesian inference provides a
self-consistent statistical framework that addresses both the necessity for
complex systematics models, and the need to combine prior information and
heterogeneous observations. This chapter offers a brief introduction to
Bayesian inference in the context of exoplanet research, with focus on time
series analysis, and finishes with an overview of a set of freely available
programming libraries.Comment: Invited revie
On computational tools for Bayesian data analysis
While Robert and Rousseau (2010) addressed the foundational aspects of
Bayesian analysis, the current chapter details its practical aspects through a
review of the computational methods available for approximating Bayesian
procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte
Carlo methods and more recently Approximate Bayesian Computation techniques
have considerably increased the potential for Bayesian applications and they
have also opened new avenues for Bayesian inference, first and foremost
Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert
Elicitation" edited by Klaus Bocker, 23 pages, 9 figure
Designing cost-sharing methods for Bayesian games
We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players
- …
