43,998 research outputs found

    Bayesian Hierarchical Modelling for Tailoring Metric Thresholds

    Full text link
    Software is highly contextual. While there are cross-cutting `global' lessons, individual software projects exhibit many `local' properties. This data heterogeneity makes drawing local conclusions from global data dangerous. A key research challenge is to construct locally accurate prediction models that are informed by global characteristics and data volumes. Previous work has tackled this problem using clustering and transfer learning approaches, which identify locally similar characteristics. This paper applies a simpler approach known as Bayesian hierarchical modeling. We show that hierarchical modeling supports cross-project comparisons, while preserving local context. To demonstrate the approach, we conduct a conceptual replication of an existing study on setting software metrics thresholds. Our emerging results show our hierarchical model reduces model prediction error compared to a global approach by up to 50%.Comment: Short paper, published at MSR '18: 15th International Conference on Mining Software Repositories May 28--29, 2018, Gothenburg, Swede

    Nonparametric Hierarchical Clustering of Functional Data

    Full text link
    In this paper, we deal with the problem of curves clustering. We propose a nonparametric method which partitions the curves into clusters and discretizes the dimensions of the curve points into intervals. The cross-product of these partitions forms a data-grid which is obtained using a Bayesian model selection approach while making no assumptions regarding the curves. Finally, a post-processing technique, aiming at reducing the number of clusters in order to improve the interpretability of the clustering, is proposed. It consists in optimally merging the clusters step by step, which corresponds to an agglomerative hierarchical classification whose dissimilarity measure is the variation of the criterion. Interestingly this measure is none other than the sum of the Kullback-Leibler divergences between clusters distributions before and after the merges. The practical interest of the approach for functional data exploratory analysis is presented and compared with an alternative approach on an artificial and a real world data set

    Modeling and visualizing uncertainty in gene expression clusters using Dirichlet process mixtures

    Get PDF
    Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture (DPM) models provide a nonparametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model-based clustering methods have been to short time series data. In this paper, we present a case study of the application of nonparametric Bayesian clustering methods to the clustering of high-dimensional nontime series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a DPM model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data

    Extracting Hierarchies of Search Tasks & Subtasks via a Bayesian Nonparametric Approach

    Get PDF
    A significant amount of search queries originate from some real world information need or tasks. In order to improve the search experience of the end users, it is important to have accurate representations of tasks. As a result, significant amount of research has been devoted to extracting proper representations of tasks in order to enable search systems to help users complete their tasks, as well as providing the end user with better query suggestions, for better recommendations, for satisfaction prediction, and for improved personalization in terms of tasks. Most existing task extraction methodologies focus on representing tasks as flat structures. However, tasks often tend to have multiple subtasks associated with them and a more naturalistic representation of tasks would be in terms of a hierarchy, where each task can be composed of multiple (sub)tasks. To this end, we propose an efficient Bayesian nonparametric model for extracting hierarchies of such tasks \& subtasks. We evaluate our method based on real world query log data both through quantitative and crowdsourced experiments and highlight the importance of considering task/subtask hierarchies.Comment: 10 pages. Accepted at SIGIR 2017 as a full pape
    • …
    corecore