107,407 research outputs found

    Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations

    Get PDF
    In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical

    EEF: Exponentially Embedded Families with Class-Specific Features for Classification

    Full text link
    In this letter, we present a novel exponentially embedded families (EEF) based classification method, in which the probability density function (PDF) on raw data is estimated from the PDF on features. With the PDF construction, we show that class-specific features can be used in the proposed classification method, instead of a common feature subset for all classes as used in conventional approaches. We apply the proposed EEF classifier for text categorization as a case study and derive an optimal Bayesian classification rule with class-specific feature selection based on the Information Gain (IG) score. The promising performance on real-life data sets demonstrates the effectiveness of the proposed approach and indicates its wide potential applications.Comment: 9 pages, 3 figures, to be published in IEEE Signal Processing Letter. IEEE Signal Processing Letter, 201

    Testing hypotheses via a mixture estimation model

    Full text link
    We consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model comparison. Our alternative to the traditional construction of posterior probabilities that a given hypothesis is true or that the data originates from a specific model is to consider the models under comparison as components of a mixture model. We therefore replace the original testing problem with an estimation one that focus on the probability weight of a given model within a mixture model. We analyze the sensitivity on the resulting posterior distribution on the weights of various prior modeling on the weights. We stress that a major appeal in using this novel perspective is that generic improper priors are acceptable, while not putting convergence in jeopardy. Among other features, this allows for a resolution of the Lindley-Jeffreys paradox. When using a reference Beta B(a,a) prior on the mixture weights, we note that the sensitivity of the posterior estimations of the weights to the choice of a vanishes with the sample size increasing and avocate the default choice a=0.5, derived from Rousseau and Mengersen (2011). Another feature of this easily implemented alternative to the classical Bayesian solution is that the speeds of convergence of the posterior mean of the weight and of the corresponding posterior probability are quite similar.Comment: 25 pages, 6 figures, 2 table

    Two methods for constructing a gene ontology-based feature network for a Bayesian network classifier and applications to datasets of aging-related genes.

    Get PDF
    In the context of the classification task of data mining or machine learning, hierarchical feature selection methods exploit hierarchical relationships among features in order to select a subset of features without hierarchical redundancy. Hierarchical feature selection is a new research area in classification research, since nearly all feature selection methods ignore hierarchical relationships among features. This paper proposes two methods for constructing a network of features to be used by a Bayesian Network Augmented Naïve Bayes (BAN) classifier, in datasets of aging-related genes where Gene Ontology (GO) terms are used as hierarchically related predictive features. One of the BAN network construction method relies on a hierarchical feature selection method to detect and remove hierarchical redundancies among features (GO terms); whilst the other BAN network construction method simply uses a conventional, flat feature selection method to select features, without removing the hierarchical redundancies associated with the GO. Both BAN network construction methods may create new edges among nodes (features) in the BAN network that did not exist in the original GO DAG (Directed Acyclic Graph), in order to preserve the generalization-specialization (ancestor-descendant) relationship among selected features. Experiments comparing these two BAN network construction methods, when using two different hierarchical feature selection methods and one at feature selection method, have shown that the best results are obtained by the BAN network construction method using one type of hierarchical feature selection method, i.e., select Hierarchical Information-Preserving features (HIP)

    Poisson Latent Feature Calculus for Generalized Indian Buffet Processes

    Full text link
    The purpose of this work is to describe a unified, and indeed simple, mechanism for non-parametric Bayesian analysis, construction and generative sampling of a large class of latent feature models which one can describe as generalized notions of Indian Buffet Processes(IBP). This is done via the Poisson Process Calculus as it now relates to latent feature models. The IBP was ingeniously devised by Griffiths and Ghahramani in (2005) and its generative scheme is cast in terms of customers entering sequentially an Indian Buffet restaurant and selecting previously sampled dishes as well as new dishes. In this metaphor dishes corresponds to latent features, attributes, preferences shared by individuals. The IBP, and its generalizations, represent an exciting class of models well suited to handle high dimensional statistical problems now common in this information age. The IBP is based on the usage of conditionally independent Bernoulli random variables, coupled with completely random measures acting as Bayesian priors, that are used to create sparse binary matrices. This Bayesian non-parametric view was a key insight due to Thibaux and Jordan (2007). One way to think of generalizations is to to use more general random variables. Of note in the current literature are models employing Poisson and Negative-Binomial random variables. However, unlike their closely related counterparts, generalized Chinese restaurant processes, the ability to analyze IBP models in a systematic and general manner is not yet available. The limitations are both in terms of knowledge about the effects of different priors and in terms of models based on a wider choice of random variables. This work will not only provide a thorough description of the properties of existing models but also provide a simple template to devise and analyze new models.Comment: This version provides more details for the multivariate extensions in section 5. We highlight the case of a simple multinomial distribution and showcase a multivariate Levy process prior we call a stable-Beta Dirichlet process. Section 4.1.1 expande
    corecore