37,780 research outputs found

    Spectral unmixing of Multispectral Lidar signals

    Get PDF
    In this paper, we present a Bayesian approach for spectral unmixing of multispectral Lidar (MSL) data associated with surface reflection from targeted surfaces composed of several known materials. The problem addressed is the estimation of the positions and area distribution of each material. In the Bayesian framework, appropriate prior distributions are assigned to the unknown model parameters and a Markov chain Monte Carlo method is used to sample the resulting posterior distribution. The performance of the proposed algorithm is evaluated using synthetic MSL signals, for which single and multi-layered models are derived. To evaluate the expected estimation performance associated with MSL signal analysis, a Cramer-Rao lower bound associated with model considered is also derived, and compared with the experimental data. Both the theoretical lower bound and the experimental analysis will be of primary assistance in future instrument design

    Uncertainty Estimation in One-Stage Object Detection

    Full text link
    Environment perception is the task for intelligent vehicles on which all subsequent steps rely. A key part of perception is to safely detect other road users such as vehicles, pedestrians, and cyclists. With modern deep learning techniques huge progress was made over the last years in this field. However such deep learning based object detection models cannot predict how certain they are in their predictions, potentially hampering the performance of later steps such as tracking or sensor fusion. We present a viable approaches to estimate uncertainty in an one-stage object detector, while improving the detection performance of the baseline approach. The proposed model is evaluated on a large scale automotive pedestrian dataset. Experimental results show that the uncertainty outputted by our system is coupled with detection accuracy and the occlusion level of pedestrians

    Dropout Sampling for Robust Object Detection in Open-Set Conditions

    Full text link
    Dropout Variational Inference, or Dropout Sampling, has been recently proposed as an approximation technique for Bayesian Deep Learning and evaluated for image classification and regression tasks. This paper investigates the utility of Dropout Sampling for object detection for the first time. We demonstrate how label uncertainty can be extracted from a state-of-the-art object detection system via Dropout Sampling. We evaluate this approach on a large synthetic dataset of 30,000 images, and a real-world dataset captured by a mobile robot in a versatile campus environment. We show that this uncertainty can be utilized to increase object detection performance under the open-set conditions that are typically encountered in robotic vision. A Dropout Sampling network is shown to achieve a 12.3% increase in recall (for the same precision score as a standard network) and a 15.1% increase in precision (for the same recall score as the standard network).Comment: to appear in IEEE International Conference on Robotics and Automation 2018 (ICRA 2018

    Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers

    Full text link
    Group emotion recognition in the wild is a challenging problem, due to the unstructured environments in which everyday life pictures are taken. Some of the obstacles for an effective classification are occlusions, variable lighting conditions, and image quality. In this work we present a solution based on a novel combination of deep neural networks and Bayesian classifiers. The neural network works on a bottom-up approach, analyzing emotions expressed by isolated faces. The Bayesian classifier estimates a global emotion integrating top-down features obtained through a scene descriptor. In order to validate the system we tested the framework on the dataset released for the Emotion Recognition in the Wild Challenge 2017. Our method achieved an accuracy of 64.68% on the test set, significantly outperforming the 53.62% competition baseline.Comment: accepted by the Fifth Emotion Recognition in the Wild (EmotiW) Challenge 201
    • …
    corecore