4,326 research outputs found

    Predictive Entropy Search for Efficient Global Optimization of Black-box Functions

    Full text link
    We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global maximum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance

    Semiparametric inference in mixture models with predictive recursion marginal likelihood

    Full text link
    Predictive recursion is an accurate and computationally efficient algorithm for nonparametric estimation of mixing densities in mixture models. In semiparametric mixture models, however, the algorithm fails to account for any uncertainty in the additional unknown structural parameter. As an alternative to existing profile likelihood methods, we treat predictive recursion as a filter approximation to fitting a fully Bayes model, whereby an approximate marginal likelihood of the structural parameter emerges and can be used for inference. We call this the predictive recursion marginal likelihood. Convergence properties of predictive recursion under model mis-specification also lead to an attractive construction of this new procedure. We show pointwise convergence of a normalized version of this marginal likelihood function. Simulations compare the performance of this new marginal likelihood approach that of existing profile likelihood methods as well as Dirichlet process mixtures in density estimation. Mixed-effects models and an empirical Bayes multiple testing application in time series analysis are also considered

    Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting

    Get PDF
    We introduce the Kronecker factored online Laplace approximation for overcoming catastrophic forgetting in neural networks. The method is grounded in a Bayesian online learning framework, where we recursively approximate the posterior after every task with a Gaussian, leading to a quadratic penalty on changes to the weights. The Laplace approximation requires calculating the Hessian around a mode, which is typically intractable for modern architectures. In order to make our method scalable, we leverage recent block-diagonal Kronecker factored approximations to the curvature. Our algorithm achieves over 90% test accuracy across a sequence of 50 instantiations of the permuted MNIST dataset, substantially outperforming related methods for overcoming catastrophic forgetting.Comment: 13 pages, 6 figure
    • …
    corecore