Predictive recursion is an accurate and computationally efficient algorithm
for nonparametric estimation of mixing densities in mixture models. In
semiparametric mixture models, however, the algorithm fails to account for any
uncertainty in the additional unknown structural parameter. As an alternative
to existing profile likelihood methods, we treat predictive recursion as a
filter approximation to fitting a fully Bayes model, whereby an approximate
marginal likelihood of the structural parameter emerges and can be used for
inference. We call this the predictive recursion marginal likelihood.
Convergence properties of predictive recursion under model mis-specification
also lead to an attractive construction of this new procedure. We show
pointwise convergence of a normalized version of this marginal likelihood
function. Simulations compare the performance of this new marginal likelihood
approach that of existing profile likelihood methods as well as Dirichlet
process mixtures in density estimation. Mixed-effects models and an empirical
Bayes multiple testing application in time series analysis are also considered