4 research outputs found

    Brief Announcement: Bayesian Auctions with Efficient Queries

    Get PDF
    Generating good revenue is one of the most important problems in Bayesian auction design, and many (approximately) optimal dominant-strategy incentive compatible (DSIC) Bayesian mechanisms have been constructed for various auction settings. However, most existing studies do not consider the complexity for the seller to carry out the mechanism. It is assumed that the seller knows "each single bit" of the distributions and is able to optimize perfectly based on the entire distributions. Unfortunately this is a strong assumption and may not hold in reality: for example, when the value distributions have exponentially large supports or do not have succinct representations. In this work we consider, for the first time, the query complexity of Bayesian mechanisms. We only allow the seller to have limited oracle accesses to the players\u27 value distributions, via quantile queries and value queries. For a large class of auction settings, we prove logarithmic lower-bounds for the query complexity for any DSIC Bayesian mechanism to be of any constant approximation to the optimal revenue. For single-item auctions and multi-item auctions with unit-demand or additive valuation functions, we prove tight upper-bounds via efficient query schemes, without requiring the distributions to be regular or have monotone hazard rate. Thus, in those auction settings the seller needs to access much less than the full distributions in order to achieve approximately optimal revenue

    Robust Revenue Maximization Under Minimal Statistical Information

    Full text link
    We study the problem of multi-dimensional revenue maximization when selling mm items to a buyer that has additive valuations for them, drawn from a (possibly correlated) prior distribution. Unlike traditional Bayesian auction design, we assume that the seller has a very restricted knowledge of this prior: they only know the mean μj\mu_j and an upper bound σj\sigma_j on the standard deviation of each item's marginal distribution. Our goal is to design mechanisms that achieve good revenue against an ideal optimal auction that has full knowledge of the distribution in advance. Informally, our main contribution is a tight quantification of the interplay between the dispersity of the priors and the aforementioned robust approximation ratio. Furthermore, this can be achieved by very simple selling mechanisms. More precisely, we show that selling the items via separate price lotteries achieves an O(logr)O(\log r) approximation ratio where r=maxj(σj/μj)r=\max_j(\sigma_j/\mu_j) is the maximum coefficient of variation across the items. If forced to restrict ourselves to deterministic mechanisms, this guarantee degrades to O(r2)O(r^2). Assuming independence of the item valuations, these ratios can be further improved by pricing the full bundle. For the case of identical means and variances, in particular, we get a guarantee of O(log(r/m))O(\log(r/m)) which converges to optimality as the number of items grows large. We demonstrate the optimality of the above mechanisms by providing matching lower bounds. Our tight analysis for the deterministic case resolves an open gap from the work of Azar and Micali [ITCS'13]. As a by-product, we also show how one can directly use our upper bounds to improve and extend previous results related to the parametric auctions of Azar et al. [SODA'13]
    corecore