7,401 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    For autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical self-driving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    Mención Internacional en el título de doctorFor autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical selfdriving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Marco Carli.- Secretario: Víctor González Castro.- Vocal: Nicola Conc

    Probabilistic Framework for Behavior Characterization of Traffic Participants Enabling Long Term Prediction

    Get PDF
    This research aims at developing new methods that predict the behaviors of the human driven traffic participants to enable safe operation of autonomous vehicles in complex traffic environments. Autonomous vehicles are expected to operate amongst human driven conventional vehicles in the traffic at least for the next few decades. For safe navigation they will need to infer the intents as well as the behaviors of the human traffic participants using extrinsically observable information, so that their trajectories can be predicted for a time horizon long enough to do a predictive risk analysis and gracefully avert any risky situation. This research approaches this challenge by recognizing that any maneuver performed by a human driver can be divided into four stages that depend on the surrounding context: intent determination, maneuver preparation, gap acceptance and maneuver execution. It builds on the hypothesis that for a given driver, the behavior not only spans across these four maneuver stages, but across multiple maneuvers. As a result, identifying the driver behavior in any of these stages can help characterize the nature of all the subsequent maneuvers that the driver is likely to perform, thus resulting in a more accurate prediction for a longer time horizon. To enable this, a novel probabilistic framework is proposed that couples the different maneuver stages of the observed traffic participant together and associates them to a driving style. To realize this framework two candidate Multiple Model Adaptive Estimation approaches were compared: Autonomous Multiple Model (AMM) and Interacting Multiple Model(IMM) filtering approach. The IMM approach proved superior to the AMM approach and was eventually validated using a trajectory extracted from a real world dataset for efficacy. The proposed framework was then implemented by extending the validated IMM approach with contextual information of the observed traffic participant. The classification of the driving style of the traffic participant (behavior characterization) was then demonstrated for two use case scenarios. The proposed contextual IMM (CIMM) framework also showed improvements in the performance of the behavior classification of the traffic participants compared to the IMM for the identified use case scenarios. This outcome warrants further exploration of this framework for different traffic scenarios. Further, it contributes towards the ongoing endeavors for safe deployment of autonomous vehicles on public roads
    • …
    corecore