1,120 research outputs found

    Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Get PDF
    Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attributed to three separate groups: wild, Eastern cultivated and Western cultivated. Twenty-seven markers showing signatures for selection were identified. They showed a directional shift in frequency from the wild to the cultivated, likely reflecting diversifying selection imposed in the course of domestication. A genetic linkage map constructed using 188 F2 plants comprised 431 markers with an average distance of 1.1 cM, divided into nine linkage groups. Using previously anchored single nucleotide polymorphisms, the linkage groups were physically attributed to the nine carrot chromosomes. A cluster of markers mapping to chromosome 8 showed significant segregation distortion. Two of the 27 DArT markers with signatures for selection were segregating in the mapping population and were localized on chromosomes 2 and 6. Chromosome 2 was previously shown to carry the Vrn1 gene governing the biennial growth habit essential for cultivated carrot. The results reported here provide background for further research on the history of carrot domestication and identify genomic regions potentially important for modern carrot breeding

    Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow

    Get PDF
    Elucidating the demographic and phylogeographic histories of species provides insight into the processes responsible for generating biological diversity, and genomic datasets are now permitting the estimation of histories and demographic parameters with unprecedented accuracy. We used a genomic single nucleotide polymorphism (SNP) dataset generated using a RAD-Seq method to investigate the historical demography and phylogeography of a widespread lowland Neotropical bird (Xenops minutus). As expected, we found that prominent landscape features that act as dispersal barriers, such as Amazonian rivers and the Andes Mountains, are associated with the deepest phylogeographic breaks, and also that isolation by distance is limited in areas between these barriers. In addition, we inferred positive population growth for most populations and detected evidence of historical gene flow between populations that are now physically isolated. Even with genomic estimates of historical demographic parameters, we found the prominent diversification hypotheses to be untestable. We conclude that investigations into the multifarious processes shaping species histories, aided by genomic datasets, will provide greater resolution of diversification in the Neotropics, but that future efforts should focus on understanding the processes shaping the histories of lineages rather than trying to reconcile these histories with landscape and climatic events in Earth history.Comment: 61 pages, 4 figures (+3 supplemental), 3 tables (+6 supplemental

    Divergent selection in trailing- versus leading-edge populations of Biscutella laevigata

    Get PDF
    Background and Aims Knowledge on how climate-induced range shifts might affect natural selection is crucial to understand the evolution of species ranges. Methods Using historical demographic perspectives gathered from regional-scale phylogeography on the alpine herb Biscutella laevigata, indirect inferences on gene flow and signature of selection based on AFLP genotyping were compared between local populations persisting at the trailing edge and expanding at the leading edge. Key Results Spatial autocorrelation revealed that gene flow was two times more restricted at the trailing edge and genome scans indicated divergent selection in this persisting population. In contrast, no pattern of selection emerged in the expanding population at the leading edge. Conclusions Historical effects may determine different architecture of genetic variation and selective patterns within local populations, what is arguably important to understand evolutionary processes acting across the species range

    Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore

    Get PDF
    Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n=32, Carpathian Mountains n=7, Dinaric-Balkan n=9, Ukrainian Steppe n=11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.201

    Wolf outside, dog inside? The genomic make-up of the Czechoslovakian Wolfdog

    Get PDF
    Background Genomic methods can provide extraordinary tools to explore the genetic background of wild species and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly popular across Europe. Results Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300 genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene, which has been described as a candidate gene for the latter trait in dogs. Conclusions In this study we successfully applied genome-wide procedures to reconstruct the history of the Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with wolves and uncontrolled trades of recent and undeclared wolfdog hybrids

    Diversifying selection between pure-breed and free-breeding dogs inferred from genome-wide SNP analysis

    Get PDF
    Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e. unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signalling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signalling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signalling pathway. HH inhibits adhesion and migration of neural crest cells from neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of “domestication syndrome”. This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication

    Genomics of extreme ecological specialists: multiple convergent evolution but no genetic divergence between ecotypes of Maculinea alcon butterflies.

    Get PDF
    Biotic interactions are often acknowledged as catalysers of genetic divergence and eventual explanation of processes driving species richness. We address the question, whether extreme ecological specialization is always associated with lineage sorting, by analysing polymorphisms in morphologically similar ecotypes of the myrmecophilous butterfly Maculinea alcon. The ecotypes occur in either hygric or xeric habitats, use different larval host plants and ant species, but no significant distinctive molecular traits have been revealed so far. We apply genome-wide RAD-sequencing to specimens originating from both habitats across Europe in order to get a view of the potential evolutionary processes at work. Our results confirm that genetic variation is mainly structured geographically but not ecologically - specimens from close localities are more related to each other than populations of each ecotype from distant localities. However, we found two loci for which the association with xeric versus hygric habitats is supported by segregating alleles, suggesting convergent evolution of habitat preference. Thus, ecological divergence between the forms probably does not represent an early stage of speciation, but may result from independent recurring adaptations involving few genes. We discuss the implications of these results for conservation and suggest preserving biotic interactions and main genetic clusters

    Signatures of natural selection between life cycle stages separated by metamorphosis in European eel

    Get PDF
    Received: 16 December 2014, Accepted: 6 July 2015, Published: 13 August 2015[Background] Species showing complex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a complex life cycle with two metamorphoses, a first metamorphosis from larvae into glass eels (juvenile stage) and a second metamorphosis into silver eels (adult stage). We tested the hypothesis that different genes and gene pathways will be under selection at different life stages when comparing the genetic associations between glass eels and silver eels.[Results] We used two sets of markers to test for selection: first, we genotyped individuals using a panel of 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total of 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total of 2413 (1.57 %) potentially selected SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group of genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many of the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle.[Conclusions] The observation of different genes and gene pathways under selection when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits of metamorphosis. Partitioning the life cycle into discrete morphological phases may be overall beneficial since it allows the different life stages to respond independently to their unique selection pressures. This might translate into a more effective use of food and niche resources and/or performance of phase-specific tasks (e.g. feeding in the case of glass eels, migrating and reproducing in the case of silver eels).We acknowledge funding from the Danish Council for Independent Reasearch, Natural Sciences (grant 09-072120 to MMH).Peer reviewe

    Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion.

    Get PDF
    How organisms adapt to new environments is of fundamental biological interest, but poorly understood at the genetic level. Chemosensory systems provide attractive models to address this problem, because they lie between external environmental signals and internal physiological responses. To investigate how selection has shaped the well-characterized chemosensory system of Drosophila melanogaster, we have analysed genome-wide data from five diverse populations. By couching population genomic analyses of chemosensory protein families within parallel analyses of other large families, we demonstrate that chemosensory proteins are not outliers for adaptive divergence between species. However, chemosensory families often display the strongest genome-wide signals of recent selection within D. melanogaster. We show that recent adaptation has operated almost exclusively on standing variation, and that patterns of adaptive mutations predict diverse effects on protein function. Finally, we provide evidence that chemosensory proteins have experienced relaxed constraint, and argue that this has been important for their rapid adaptation over short timescales
    corecore