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Extensive local adaptation within the
chemosensory system following Drosophila
melanogaster’s global expansion
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How organisms adapt to new environments is of fundamental biological interest, but poorly

understood at the genetic level. Chemosensory systems provide attractive models to address

this problem, because they lie between external environmental signals and internal

physiological responses. To investigate how selection has shaped the well-characterized

chemosensory system of Drosophila melanogaster, we have analysed genome-wide data from

five diverse populations. By couching population genomic analyses of chemosensory protein

families within parallel analyses of other large families, we demonstrate that chemosensory

proteins are not outliers for adaptive divergence between species. However, chemosensory

families often display the strongest genome-wide signals of recent selection within

D. melanogaster. We show that recent adaptation has operated almost exclusively on standing

variation, and that patterns of adaptive mutations predict diverse effects on protein function.

Finally, we provide evidence that chemosensory proteins have experienced relaxed constraint,

and argue that this has been important for their rapid adaptation over short timescales.
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U
nderstanding how organisms adapt to new environ-
ments—local adaptation—is of fundamental biological
interest. While there is extensive evidence for local

adaptation based on phenotypic data, its genetic basis in natural
populations is poorly understood1. Identifying the precise
molecular change(s) that underlie the selected trait(s) remains
challenging, as does answering general questions regarding the
mutational sources (de novo, standing variation) and overall
frequency of adaptive evolution2–4. Addressing these challenges
demands both an in-depth characterization of population genetic
variation and a detailed molecular understanding of the biological
system under selection.

A particularly interesting question is how neural sensory
perception is altered during local adaptation. Sensory systems
interact directly with the environment, and are responsible
for translating external visual, chemical, mechanical and
thermosensory signals into changes in physiology and behaviour.
The match between perceptual ability and behavioural outputs
carries numerous fitness consequences, for example, the ability
to locate food and breeding sites, avoid danger, identify mates
and regulate body temperature. Because new environments can
present novel stimuli, it is suspected that many sensory systems
have experienced strong selective pressures to evolve quickly.

The chemosensory systems of the fruit fly Drosophila
melanogaster, underlying olfaction and gustation, provide
attractive models to address the genetic basis of local adaptation.
Laboratory studies have defined many molecular, physiological
and anatomical properties of D. melanogaster’s chemosensory
circuits5–8. In nature, the environmental chemical universe
relevant for D. melanogaster’s survival is vast, encompassing
both volatile and non-volatile signals. These can indicate sources
of nutrition, oviposition sites and dangers such as poisonous
microbes9 and predators10, as well as pheromones that control
mating, aggression and aggregation behaviours11,12.

Environmental chemicals are detected in D. melanogaster by
chemosensory neurons housed within porous cuticular hairs
called sensilla5. Olfactory sensilla, which detect volatile chemicals,
are located on two head appendages, the antenna and maxillary
palp. Gustatory sensilla are distributed more widely, on the
labellum of the proboscis, leg tarsi, wing margins and, in females,
the ovipositor. Chemical detection by these sensory structures
requires their direct (or close) contact with a substrate.
The Drosophila larva also possesses a number of specialized
olfactory and gustatory organs5.

The vast majority of receptors that detect chemical signals and
convert ligand binding into neural activity belong to one of three
repertoires, each comprising B60 genes: odorant receptors (ORs)
and gustatory receptors (GRs), which encode related families of
seven transmembrane domain ion channels5, and ionotropic
receptors (IRs), which are distantly related to ionotropic
glutamate receptors (iGluRs)13. Olfactory organs express ORs
and a subset of IRs (B15 genes; termed ‘olfactory IRs’14), with
most olfactory sensory neurons expressing a single ‘tuning’ OR or
IR that is the principal determinant of the odour-response profile.
Gustatory sensory neurons express GRs and the complementary
subset of B45 ‘non-olfactory’ IRs, with individual neurons
often expressing multiple GR and/or IR genes8,15,16. In addition
to these transmembrane proteins, perireceptor proteins of
the odorant-binding protein (OBP) family are secreted into the
sensillum lymph that bathes chemosensory neuron dendrites.
Despite their name, OBPs (encompassing B50 genes) are
expressed in both olfactory and gustatory organs, usually in
specific subsets of sensilla, where they are thought to contribute to
chemosensory signal transduction by solubilizing, transporting
and/or protecting chemical ligands from degradation within the
aqueous lymph before reaching the sensory membranes17.

Previous comparative studies have highlighted the evolution of
chemosensory gene families (Ors, Grs, Irs and Obps) as ‘dynamic’,
in terms of high protein divergence, expression differences
and family member turnover15,18–20. Although these changes
have occasionally been associated with ecological differences
between species18,20,21, very little is currently known about the
adaptive (and non-adaptive) function that these changes might
have provided. Moreover, almost nothing is known about within-
population variability for these families, as most evolutionary
investigations have focused on inter-species comparisons. At
these deeper timescales (that is, many millions of years), the
short-lived DNA-based signals of selection are largely eroded22,
and the accumulation of non-selected substitutions complicates
the identification of the beneficial mutation(s).

To gain a broad understanding of the evolutionary forces
governing the D. melanogaster chemosensory families and to
identify specific targets of selection, we have analysed the
genome-wide data (single nucleotide polymorphism (SNP), indel
and larger copy number variants (CNVs)) from the recently
sequenced global diversity lines (GDLs)23. These 84 lines
encompass an ancestral-like African D. melanogaster population
(Zimbabwe) and four derived populations from North America
(Ithaca, USA), Europe (Netherlands), Asia (Beijing) and the
South Pacific (Tasmania). The African ancestral population of
D. melanogaster is believed to have expanded B60,000 years ago
and subsequent lineages have inhabited ecologically diverse
localities world wide24. These genomic samples are therefore
well suited for testing how local adaptation has impacted the
chemosensory system, and to provide the first view into how
these systems vary among distinct populations.

By placing genomic analyses of chemosensory protein families
in the context of those of other large families, we demonstrate
that chemosensory proteins as a group do not display exceptional
rates of adaptive divergence. By contrast, more recent signals of
historical selection arising from within-species analyses reveal
striking evidence for selection in chemosensory protein families.
Moreover, these analyses indicate that standing variation has
provided the primary substrate for selection, and that this
variation likely has diverse effects on protein function.

Results
Molecular divergence of large protein families. We were
interested in quantifying the extent to which chemosensory
proteins experience adaptive evolution over short time spans
relative to other regions of D. melanogaster’s genome. Because the
main chemosensory gene families are large (B60 members each)
and often tandemly arranged, we used all other large multigene
families (Z20 members) for our standard of comparison.
Protein family definitions were based on PANTHER Database
classifications25, and encompass 40 families (Supplementary
Table 1) with known or predicted roles in diverse biological
processes such as immune defence and metabolism.

Like chemosensory genes, members of these multigene families
are broadly distributed across D. melanogaster’s major chromo-
some arms and recombination environments (Supplementary
Fig. 1). In addition, the use of protein families provides a more
natural comparison across groups of genes with varying degrees
of functional overlap than a random set of loci.

Our polymorphism data originated from the GDLs, for which
there are validated calls for B5.8 million SNPs and 970,000 small
indels23. In addition, we have incorporated CNV calls consisting
of 2,221 duplications, 56,562 deletions and 3,850 insertions26.
These polymorphism and divergence data allow us to test
models of adaptive evolution at two different timescales, and
provide information about adaptive changes that occurred as
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D. melanogaster was forming as a species, as well as local
adaptation during its recent global expansion (Fig. 1).

Chemosensory genes are not outliers for adaptive divergence.
We first investigated the occurrence of relatively old signals of
selection within these large protein families along the branch
leading to extant D. melanogaster after it split from its last
common ancestor with the D. simulans triad (B3–5 Myr ago27;
Fig. 1). In particular, we tested whether chemosensory genes
experienced a disproportionate number of positively selected
protein changes along this branch when compared with the other
large families. Central to our tests were the numbers of silent and
replacement polymorphism (PS and PR, respectively) and silent
and replacement substitutions (DS and DR, respectively). These
can be compared through contingency tables, referred to as
McDonald-Kreitman (MK) tables28. If positive selection has acted
on protein structures, we would expect a significant excess of
replacement changes between species (that is, an excess DR/PR

relative to DS/Ps). Under a neutral model, we would expect equal
ratios (DR/PR¼Ds/Ps). From these data, it is also possible to
estimate the fraction of amino-acid differences that were fixed
between species by positive selection2,29.

We calculated three related summary statistics based on our
MK tables for the 29 large protein families having the most
complete data: individual gene MK test P values28, a summary
of the MK tests that controls for sparse data referred to
as the direction of selection (DoS30), and the fraction of protein
changes fixed by positive selection, a (refs 2,29). Although we
identified a small number of individual chemosensory genes as
potential targets of positive selection (before and after
correcting for multiple tests; Fig. 2a; Supplementary Data 1),
the chemosensory families do not uniformly have a higher
frequency of significant MK tests than the other large protein
families nor are their a values concentrated in the upper tail
(Fig. 2b; similar results were observed for DoS estimates;
Supplementary Fig. 2). These data indicate that the
chemosensory genes, as a group, are not outliers for having
experienced adaptive divergence.

Adaptive divergence within chemosensory families. Within
the four chemosensory families, Ors and Grs consistently carry
the strongest family-wide signals of interspecific adaptive change.
Notably, the confidence intervals for the Or and Gr a estimates
are relatively small and do not overlap zero (Fig. 2b); in addition,
Ors possess the fifth highest estimated a value among large
protein families. By contrast, the Irs and Obps provide a estimates
that are compatible with neutrality (confidence intervals overlap
zero; Fig. 2b). A consistent result is obtained if we scale a by
the rate of synonymous substitution (oa), indicating that
the observed trend among chemosensory loci, as well as the
comparison of chemosensory loci and other large protein
families, is not driven by systematic differences in the effectively
neutral substitution rates among families31 (Fig. 2c).

A set of 17–21 genes (10 Ors, 4 Grs, 6 Irs and 1 Obp) shows an
excess of nonsynonymous divergence before correcting for
multiple tests, depending on whether the substitutions are
polarized along D. melanogaster’s branch (Supplementary Data
1). One of the Ors (Or67a) was independently identified as a
target of selection within a more limited study of this family32.
While caution must be applied to this set, as only two are
significant after Bonferroni correction (Or33c and Or49a), several
encode receptors with behaviourally relevant ligands. For
example, OR49a is narrowly tuned to a Leptopilina wasp
semiochemical, and is necessary for avoidance of this
parasitoid10. A second intriguing candidate is GR63a, which is
part of a receptor for CO2, a potent, but species-specific trigger of
avoidance behaviours33. These data provide potential inroads for
between-species studies of functional differences, to permit
rigorous tests of adaptive protein changes.

Within the Ir family, five of the six genes that individually carry
signals of adaptive evolution are from the non-olfactory
subfamily, many of which are expressed in taste organs8,15.
This subfamily has experienced more extensive between-species
changes than the olfactory Irs, many of which are deeply
conserved in insects15. We therefore estimated a separately
for the two Ir subfamilies to test whether this accelerated
divergence was the result of relaxed constraint or adaptive protein
changes. Indeed, the non-olfactory subfamily carries a positive a
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Figure 1 | D. melanogaster’s recent global expansion. Left: tree schematic illustrating D. melanogaster’s relationship with its most closely related species,
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estimate, but its confidence interval does narrowly overlap zero
(0.116, � 0.01:0.23), while the olfactory subfamily possesses a
negative a estimate (� 0.12, � 0.52:0.18; Fig. 2d).

To explore whether other subgroups of chemosensory gene
families display different divergence properties, we additionally
examined the Gr and Or a estimates with respect to the subsets of
these genes expressed only in the adult or larva, and for the subset
of Gr genes that encode receptors implicated in bitter tastant
detection5,7 (sample size limits other types of categorization).
Adult-specific Ors have a significantly positive a (0.42, 0.26:0.55;
log likelihood ratio test: Po0.0001), in contrast to those
expressed only in the larva (Fig. 2d). A similar relationship was
not observed for the Grs. However, there is an indication that
the receptors outside of the bitter clade (including those

detecting pheromonal and sweet ligands) are more likely to
have experienced adaptive divergence, as their a is significantly
positive (0.22, 0.03:0.37; log likelihood ratio test: Po0.05),
while the bitter clade’s confidence interval overlaps zero
(0.17, � 0.03:0.32).

Together, these between-species analyses provide a broader
protein family-wide context to interpret chemosensory protein
divergence than has previously been available. Importantly, our
results suggest that chemosensory families did not contribute
disproportionately to adaptive evolution within the ancestral
lineage leading to extant D. melanogaster. These findings
support a more tempered view than has often been taken, in
which chemosensory protein families are presented as
‘token’ examples of rapid adaptive divergence. Consistent with
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previous results2,34, our data indicate that D. melanogaster’s
protein-coding genome as a whole experienced a large amount of
adaptive divergence; chemosensory proteins fit within this
greater trend. In this context, our analyses provide novel
insights into other large protein families, and highlight those
that warrant further investigation for between-species differences.
Interestingly, the ‘adenylate and guanylate cyclase’ family, which
has the highest a value (0.59, 0.43:0.71; log likelihood ratio test:
Poo0.01; Fig. 2b), includes genes implicated in behavioural
responses to gustatory stimuli and hypoxia35.

Chemosensory families and rapid local adaptation. We next
tested for selective events that have occurred over the past few
thousand years within D. melanogaster populations. Do similar
evolutionary patterns hold across this shallower timescale, and
how might the global expansion out of Sub-Saharan Africa into
new ecological niches impact the chemosensory protein families?

A common approach to scanning the genome for
between-population signals of selection is to test for significant
differences in allele frequencies among population samples
(Fst-based approaches). Differences in the presence or strength
of positive selection across populations can result in changes in
allele frequencies, thereby elevating values of Fst. We applied two
Fst-based approaches: a Bayesian model-based approach36 and a
demographically informed empirical-distribution approach.

As our initial interest was in the relative rankings among
the large protein families, we summarized the results from the
Bayesian analysis as the fraction of SNPs identified as outliers,
scaled by the total number of SNPs within each family. Due to the
varying effective population sizes, these analyses were carried out
separately for the autosomes and the X chromosome. The
proportion of outlier SNPs for Ors and Grs on autosomes (0.013
and 0.009, ranking second and third, respectively), and for Grs
and Irs on the X chromosome (0.021 and 0.018, ranking first and
second) are among the largest (Fig. 3a,d). When focusing
exclusively on protein-changing SNPs, the chemosensory
families, except for the Obps, rise further in the rankings for
the autosomal set (Grs are first (0.005), Ors are second (0.004)
and Irs are eleventh (0.0005); Fig. 3b).

These model-based Fst results are consistent with the
contribution of the nonsynonymous Fst values in the extreme
tails of the genome-wide empirical Fst distributions. If positive
selection has operated disproportionally on the sensory protein
families, we would expect there to be an enrichment of these
genes in the upper tail of the Fst distribution. We calculated the
1% upper tails from all five pair-wise population nonsynonymous
Fst distributions, and computed the number of nonsynonymous
polymorphisms falling within these tails for each of the protein
families. We then scaled these counts by the total number of
nonsynonymous polymorphisms within each protein family.
Notably, the chemosensory genes have a much higher proportion
of protein-changing SNPs in the upper tails of the Fst distribution
than most other protein families (Fig. 3c,f). As expected, all loci
identified through the Bayesian analysis were identified within the
1% data set.

Our results from examining the empirical distribution of Fst are
robust across both the autosomal and the X-chromosome loci,
and are independent of the particular threshold used for
identifying the tail (Fig. 3). Furthermore, we used coalescent
simulations to explore how likely the observed Fst values in the
extreme tails would be observed under selectively neutral models
that include reasonable demographic parameters. Encouragingly,
for most pair-wise comparisons, our values demarking the
empirical 1 and 5% tails superseded those of the simulations
(several Beijing scenarios are exceptions; Supplementary Data 2).

These simulation results reinforce the conclusions that the
extreme Fst tails are enriched for targets of positive selection
and that chemosensory protein families are among the most
quickly adapting proteins in the D. melanogaster genome among
populations.

Integrating Fst outliers with chemosensory protein function.
Functional analyses of chemosensory receptors, in particular the
ORs, have revealed a range of breadths of tuning profiles, from
receptors that respond to only a single compound, to those that
detect many chemically diverse molecules37,38. We asked whether
the tuning breadth of the receptors has a relationship with their
rate of between-population differentiation. One might suspect, for
example, that broadly tuned receptors could more readily be
selected upon, as a result of having a larger pool of potential
ligands. Conversely, narrowly tuned receptors may be more
crucial to the fly’s fitness and thus be under stronger
purifying selection. We used published receptor specificity data
(measured by lifetime kurtosis) for a majority of ORs39. We then
regressed Fst values onto these receptor specificity measures.
We found a significantly negative correlation between Fst and
the breadth of tuning (� 0.24; P¼ 0.03), suggesting that
broadly tuned receptors differ between D. melanogaster
populations more than narrowly tuned receptors
(Supplementary Fig. 3). Although additional substantiating
physiological data are needed, this observation might guide
future investigations of the relationship between the specificities
of receptors and their rates of evolution.

IRs, ORs and GRs are thought to be ligand-gated ion channels,
whose binding of extracellular chemicals induces gating of a
transmembrane pore40. To investigate whether selection
candidate residues cluster within functional domains of these
receptors, we mapped the top amino-acid-changing candidate
SNPs (1% Fst outliers) onto reference protein models. The
predicted domain organization of IRs is best understood because
of their homology to iGluRs, and we found that many of the
candidate residues are located within the ligand-binding domain
(Fig. 4). However, many also map to the amino-terminal region
(which has an important but unclear function in IRs6) and the
ion-channel domain (Fig. 4). The three-dimensional structure of
the heptahelical OR and GR ion channels is unknown, but an OR
protein model has been built using amino-acid coevolution
patterns and secondary structure predictions41. Within this
model, many candidate residues map within the N-terminal
half of the protein, which is thought to encompass the
ligand-binding site (Fig. 4), but others are located more
C-terminally (in transmembrane helices and intra- and
extracellular loops) where ion conduction may occur42 (Fig. 4).
A similar distribution was found for candidate sites mapped
onto a two-dimensional representation of a GR (Fig. 4). These
analyses predict that sites under positive selection can
have diverse functional influences on these receptors, including
both their ligand-binding and ion conduction properties. For
OBPs, sites were mapped onto the X-ray crystal structure of
LUSH43, revealing their location both in the internal
ligand-binding cavity and on the external surface (Fig. 4).
This distribution suggests that these sites could have either
direct or indirect effects on interactions of these proteins with
chemical cues.

Chemosensory genes carry signatures of selective sweeps. Given
the striking evidence for positive selection based on allele
frequency differences between D. melanogaster populations, we
reasoned that signatures of selective sweeps might also be borne
out in the SNP site frequency spectra (SFS). We tested this
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hypothesis by computing Fay and Wu’s H statistic (H) across all
multigene families44; an excess of high-frequency-derived alleles is
reflected by negative H values and is indicative of a selective sweep.
Notably, of the nine families possessing negative H estimates, three
of these were chemosensory families (Or, Gr and Obp; Fig. 5a).
Coalescent simulations, conditioned on the number of segregating
sites observed within individual chemosensory genes and over a
range of recombination and demographic parameters, identified a
number of outliers in all chemosensory families (Supplementary
Data 1 and 3). Similar to our divergence analyses (Fig. 2d), we
examined the distribution of H among stage- and function-specific
subgroups of chemosensory families. Here the only functional
grouping that alone had a significant signature of adaptation was
the adult-specific Grs (Fig. 5b).

We additionally carried out a genome-wide selection scan
using the composite likelihood ratio (CLR) test45. We again
observed that chemosensory loci harboured significantly higher
CLR values than the other protein families; this suggests that the
former harbour a greater proportion of loci that have skews in the
SFS, consistent with positive selection (Supplementary Fig. 4).

These SFS-based results provide complementary lines of evidence
to our Fst findings, further arguing that sensory protein
families are experiencing directional selection at higher rates
compared to other large protein families. This unique view of
protein family population dynamics highlights the primary
role that loci involved in chemosensory perception have had in
acting as ‘first responders’ when adapting to new ecologies as
D. melanogaster expanded globally.

Of the proteins that are SFS-based selection candidates,
only a few have known ligands, but several of these define
sensory pathways linked to specific behavioural phenotypes
(Supplementary Data 1). For example, OR47b, OR88a and
GR68a are all necessary for the detection of fly-produced
chemicals that control different sexual and/or attraction
behaviours46,47, OR49a (introduced above) detects a parasitic
wasp semiochemical to mediate avoidance10, and GR43a is an
internal sensor of fructose involved in feeding regulation48.
These and other characterized genes represent excellent
candidates for future studies linking adaptive mutations to
phenotypic consequences.
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Chemosensory families adapt through standing variation. The
extent to which adaptive selection acts on standing variation
versus de novo mutations is a fundamental and debated topic
because of its relevance for understanding rates of adaptation3,49.
Having sampled the ancestral-like Zimbabwe population, we were
able to address this issue for the D. melanogaster chemosensory
system. Examination of the set of alleles inferred to be under
positive selection (BayeScan based or 1% Fst tail) indicated that
alleles with the derived state regularly segregate in the ancestral
range (92%). In addition, most high-frequency-derived mutations
within individual genes that carry significantly negative H values
are variable within the Zimbabwe lines. These data imply that a
classic hard sweep model—in which adaptive alleles originate as
de novo mutations and are quickly fixed—is not supported for the
chemosensory loci carrying signals of adaptation.

The observation that selection at chemosensory loci appears to
occur rapidly, and predominantly on standing variation, prompted
us to seek evidence for divergent selection at different protein-
altering positions within the same gene. Instances of this
phenomenon would potentially illustrate multiple selective events
on the same protein (divergent selection), and may indicate that

adaptation at these loci is not mutation limited. To address this
question, we investigated genes within this same candidate set
(BayeScan based or 1% Fst tail) that harboured two or more highly
differentiated amino-acid-altering polymorphisms between
populations. In total, 12 of these genes showed signals of divergent
selection between populations for different amino-acid-changing
SNPs: Or22a, Or22b, Or59a, Gr36b, Gr36c, Gr59d, Gr59e, Gr93d,
Ir11a, Ir48b, Ir48c and Ir75b. Different populations may therefore
have utilized different protein variants from the pool of standing
variation to adapt locally.

Rarity of novel chemosensory genes within D. melanogaster. In
addition to protein divergence, comparative genomic studies have
demonstrated that gene gains and losses are frequent and
important events for chemosensory families50,51. The causes for
the changes in family sizes remain unresolved, but have
occasionally been correlated with ecology and lifestyles18,20,21.

Using our polymorphism data, where signals of selection and
mutational processes remain the strongest, we examined the
earliest stages of family size change. For comprehensive
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quantification of the relative frequencies of functional gains (new
gene duplicates) versus functional loss (gene-disrupting muta-
tions), we utilized genome-wide SNP, indel and CNV variant
calls23,26.

Within our set of 2,221 duplications, complete gene
duplications of chemosensory loci are rare (4 Grs (7%); 5 Ors
(8%); 0 Irs (0%); 2 Obps (4%)). Moreover, none of these
duplications segregate in 416% of the individuals in one
population and only one of the duplications (Or43b) segregates
in multiple populations (Supplementary Table 2; Supplementary
Data 4). These data indicate that recent functional diversification
through whole-gene duplication within D. melanogaster is rare.

We did uncover, however, several instances of novel
chemosensory gene structures resulting from CNVs joining
nearby genes. In total, we observe 11 chimeric structures and 6
gene fusions involving chemosensory genes (Supplementary
Data 4). While chimeric structures were as likely to involve
genes on the same or on opposite strands, all six gene fusions
were between chemosensory genes on the same strand. Similar to
the whole-gene duplications, nearly all these novel structures are
found at low frequencies and/or are unlikely to be functional
based on intron/exon structures. The two exceptions are fusions
of Or22a and Or22b (ref. 52) and a novel fusion of Or65b and
Or65c (Supplementary Data 4).

Polymorphic gene loss is common within chemosensory families.
In contrast to the paucity of new genes and protein gene structures,
we observed a high frequency of disrupted alleles of chemosensory
loci. Among the total set of deletions, sensory genes are significantly
overrepresented based on gene ontology functional enrichment
tests (Supplementary Data 5; Supplementary Tables 3 and 4).
Contrasting the ratios of deletions to duplications, we estimate
values ranging from B5:1 (Obps, Grs and Ors) to 19:0 (Irs). In an
evolutionary context, if we assume that the deletions in this set that
segregate at 410% are effectively neutral, we would expect drift
alone to reduce each of these protein families at 4–14 times the rate
that they expand (Grs: 14:0; Irs: 7:0; Ors: 6:1; Obps: 4:1). This trend
would be consistent with the reduction in the Or, Gr and Ir families
that has been inferred using between-species data15,20.

In addition to the CNV data, nonsense mutations within Grs
and Irs were roughly twice as frequent compared with other large
protein families; a similar trend was not seen for the Ors or Obps
(Supplementary Data 6; Supplementary Table 5). We did not
observe any enrichment in small frameshifting indels within the
chemosensory loci (Supplementary Table 5). To provide an
estimate for the fraction of each of the chemosensory families that
harbours loss-of-function mutations, we combined these SNPs
and small indels with the CNV disruptions. We additionally
required at least one of these disruptive mutations to be
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segregating Z10% of the individuals in one population (because
mutations were collapsed, there are multiple instances of genes
harbouring several null mutations). Summarized in this way, all
chemosensory families carry appreciable numbers of null alleles;
in some cases, these can be quite high (for example, B25% for the
Irs) (Fig. 6a). While many chemosensory genes remain intact
across all populations, there is a small fraction of each gene family
that segregates nulls in all populations (Fig. 6b). Notably, there is
no trend with respect to the populations. For example, the
Zimbabwe sample does not systematically possess the fewest null
alleles, which might have been expected if an out-of-Africa
bottleneck was principally responsible for the relaxed constraint
in the derived populations.

The mutational target size for gene loss is much larger than for
gene gain, and the observed excess of polymorphic disruptive
mutations compared with new genes is unsurprising. However,
the significant enrichment specifically for chemosensory genes
suggests that some are likely to be under relatively relaxed
purifying selection, potentially allowing weakly deleterious
mutations to persist in the population for longer and at higher
frequencies. Overall, selective constraint based on the nucleotide
diversity at replacement sites scaled by nucleotide diversity at
silent sites (PR/PS) indicates that purifying selection is the
predominant force acting across all protein families (PR/PSo1
for all gene families; Fig. 5c). However, chemosensory genes do
have PR/PS distributions that are slightly elevated compared with
the background estimate provided by the large protein data set,
consistent with weaker purifying selection (Fig. 5c).

Discussion
The immense molecular and functional diversity of sensory
systems between species is increasingly well appreciated. Beyond
documenting these differences, however, understanding how such
variation emerges within a population, and how it is fixed
between species, requires knowledge of the evolutionary forces
that govern these changes. Because the genetic signatures required
to test models of adaptive evolution are quickly lost22, this aim
necessitates population genetic data sets.

We have leveraged a population genomic dataset for
geographically diverse samples of D. melanogaster to investigate
the role of adaptive evolution in the recent history of this species’
chemosensory system. A striking result that emerged is the
contrast between the signatures of adaptive evolution between the
divergence (interspecific) and polymorphic (intraspecific) time-
scales. Chemosensory genes are not outliers for adaptive changes
between species in the context of other multigene families.
However, within D. melanogaster, these genes carry some of the
most pronounced signatures of positive selection. Moreover, we
have shown that selection has operated predominantly on
standing variation, and that there is evidence for multiple

advantageous alleles segregating at some loci. In addition,
there is strong evidence that the chemosensory protein families
are under weaker purifying selection relative to other large
protein families, with a higher than expected number of
disruptive mutations segregating within them, and elevated
PR/PS distributions.

Our detection of signatures of both positive selection and
relaxed constraint suggests hypotheses for the modes of evolution
experienced by the chemosensory protein families. We propose
that chemosensory genes are under weaker purifying selection as a
result of: (i) a high level of functional redundancy (overlapping
ligand recognition38,53 or chemosensory-evoked behavioural
functions), (ii) fluctuating purifying selection over diverse
ecological niches (spatially varying selection) and (iii) a relative
freedom from pleiotropic constraints (their action on downstream
processes is accomplished solely by the activation of specific classes
of chemosensory neurons, and loss of function of these genes does
not directly cause lethality or extreme phenotypes). The confluence
of these attributes creates a class of genes that would be expected to
respond rapidly to selective pressures: there would be ample
genetic variation segregating at appreciable frequencies, and little
genetic correlation with non-selected traits to impede the direction
of selection3,54. Our demographically diverse D. melanogaster
samples appear to have provided an opportune timeframe to
observe this swift adaptive response to new environments.

Over longer time periods, we propose that signatures of
adaptation at other loci ‘catch up’ with the initial rapid bout of
adaptation of chemosensory genes. This could explain why
comparative studies spanning longer time periods would tend to
average out selective signals. An additional contributing factor
might be that the environmental fluctuations within Africa during
the D. melanogaster speciation event did not match those that the
species endured during its global expansion.

In conclusion, we have shown that the peripheral chemosen-
sory system of D. melanogaster shows strong signatures of
selection over short timescales. These results, together with the
existing and emerging molecular and neurogenetic tools, provide
an exciting foundation for investigating the genetics of adaptation
at the functional level.

Methods
Genomic data. The genomic data used for the study originated from the GDLs23, a
reference panel consisting of 84 lines derived from five world populations:
Beijing–China (15 lines), Ithaca–USA (19 lines), Netherlands (19 lines), Tasmania
(18 lines) and Zimbabwe (13 lines)55. These lines were inbred for 12 generations
and are mostly homozygous, except for regions associated with inversions, which
could not be inbred (referred to as ‘heterozygous blocks’23). GDLs were fully
sequenced to an average depth of 12.5� per line, and independent validation for
both SNP and small indels were generated. These high-quality SNP and small indel
calls are publicly available (SRA study SRP050151). In this work, we used the SNP
calls that remained after applying the IBD and callability masks23. The SNP
annotations that were generated by SNPeff56 are the same as in the original GDL
publication23. Nonsense mutations used in the analyses of null alleles were based
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on these annotations. For the null alleles resulting from small indels, we crossed
exon BED files for our gene families with the GDL’s small indel VCF file.
Frameshifting indels that fell within exon sequences were considered disruptive.
SNP diversity estimates per site for our gene sets were generated using vcftools57

(v0.1.11). Divergence statistics were based on the available alignment of the GDL
SNPs to D. melanogaster (dm3), D. simulans (droSim2), D. sechellia (droSec1), D.
erecta (droEre2) and D. yakuba (droYak2); probabilistic ancestral calls exist for all
variable sites. Estimations for the total number of nonsynonymous (ns) and
synonymous (s) positions within our gene sets were based on the degeneracy of the
codons as annotated by SNPeff: lengthns¼ L1þ 2/3(L2)þ 1/3(L3) and
lengths¼ L4þ 1/3(L2)þ 2/3(L3), where Lx is the number of x-fold degenerate sites.

CNV data sets. CNVs were identified by integrating the results of three
independent CNV detection pipelines: Pindel58 (v2.07.11; split-read detection), an
in-house pipeline designed around BLAT59 (split-read detection) and Delly60

(v0.0.7; paired-end detection). The initial set of calls was subjected to several filters
and its quality was evaluated by PCR (6–12% false discovery rate depending on
whether read depth further supported the call). The final CNV data set consists of
2,221 duplications, 56,562 deletions and 3,850 insertions relative to the reference
genome and varying in size between 25 bp and 25 kb (the chosen size limits)26. For
the gene structure analyses, we defined ‘chimeric’ structures as duplication events
that partially duplicate two genes to produce a novel gene structure (the original
two loci remain unaltered, leading to family size expansion). We defined ‘gene
fusions’ as genic structures arising by a deletion event that brought together
portions of two tandem genes into a single structure (leading to family size
reduction).

Definition of protein families. Protein family groupings were based on the
evolutionary and functionally informed classification scheme implemented in the
PANTHER database25. To extract the large protein families, we downloaded the
total set of ‘Protein Classes’ from the database. We removed redundant members
from these classes and we retained only those families that had Z20 members. We
then cross-referenced the gene IDs within the PANTHER database entries with
gene IDs from FlyBase to ensure correct naming convention. Any PANTHER entry
that did not identify a gene within FlyBase was removed. We also excluded the
chemosensory protein families and replaced them with our own manually curated
set. In total, our ‘large protein family’ data set (including chemosensory genes)
comprises 40 families, encompassing B1,200 genes (Supplementary Data 8).

Polymorphism-divergence tests of selection. Silent and replacement poly-
morphism was defined by crossing BED files of genes within our large protein
family data set with the GDL SNP annotation results23 outputted by SNPeff56.
Divergences were counted based on published probabilistic calls23; only positions
within the alignments having Z85% posterior probability were retained. MK based
tests28 (using a Fisher’s exact test) utilized only the African polymorphism data. To
avoid tests on genes with too few divergences or too little polymorphism, we
required the marginal counts of the MK tables to be 46. We additionally carried
out polarized MK tests with these data using the inferred ancestral state calls
described above. DoS calculations30 were made based on the MK tables using an R
script. To estimate the fraction of amino-acid substitutions driven to fixation by
positive selection (a), and a scaled by the synonymous substation rate (oa), we used
the DoFE package (www.lifesci.susx.ac.uk/home/Adam_Eyre-Walker/Website/
Software.html). Divergence, polymorphism, lengthns and lengths counts that were
input for DoFE were calculated using the SNPeff annotations as described above.
To create equal sample sizes across the African loci for the oa estimate, we imputed
missing data based on the African-specific allele frequencies.

Fst analyses. Genome-wide Fst estimates were generated using the approach of
Weir and Cockerham61, which allows for unequal sampling between
populations. Fst values for each gene within our large protein family data set were
extracted by crossing our BED files with the Fst files. Similarly, assigning the
positions as silent or replacement was achieved with the SNPeff annotations
described above.

For input to BayeScan36 (v2.1), we filtered all polymorphic sites from our large
protein family data set that had a minor allele frequency r0.15. We converted our
data files from VCF to 012 format using vcftools57 (v0.1.12a). We used this
resulting 012 file to produce the BayeScan input file using a custom R script.
To run BayeScan on each gene family, we modified the default settings so that
the ‘-pr_odds’ switch was set to 10 and outputted the full trace data.

SFS scan for selection. We applied the method of Nielsen et al.45, implemented in
SweeD62 (v3.2.11), to the full folded SNP data set for each of the five populations
independently. For each data set, the CLR was calculated over a grid of 60,000
(-grid 60,000), which resulted in estimates over B400 bp. To compare CLRs
between gene families (Supplementary Fig. 4), we extracted CLR estimates for each
gene family based on the coordinates within the BED files (see above).

Coalescent simulations. Coalescent simulations to determine outlier Fst values
were carried out using msms63.

The topology of the model was based on the previously computed genome-wide
Fst

23, but with a forced polytomy between the short terminal branches of
the Netherlands, Ithaca and Tasmania populations. We additionally allowed
for migration between the African and ancestral out-of-Africa branch (see
Supplementary Fig. 5 and Supplementary Data 8 for the simulation parameters).

The coalescent simulations used to investigate the significance of Fay and Wu’s
H were run using ms64. For each chemosensory family, our simulations were based
on the median length of the genes (Ors and Grs¼ 1,500 bp; Irs¼ 2,000 bp;
Obps¼ 600 bp). We ran 10,000 simulations for three demographic models
(Supplementary Data 8), for three recombination rates (r¼ 1, r¼ 50, r¼ 250),
and conditioning on the number of segregating sites within each candidate gene.
We calculated summaries of the distribution of Fay and Wu’s H using the
‘sample_stats’ utility within ms64. Simulation commands are available in
Supplementary Data 7.

SNP-based summary statistics. Fay and Wu’s H44 was calculated using the ‘stats’
utility within the ms distribution64. For input into ‘stats’, we treated each gene
sample as a haplotype by randomly selecting one of two alleles if a given gene
contained heterozygous sites. In addition, missing data were imputed based on the
population-specific allele frequency of the site.

Lifetime kurtosis. We obtained lifetime kurtosis (KL) estimates by first merging
available olfactory receptor response data sets within the Database of Odorant
Responses39 (DoOR). DoOR is an R-based65 database, with accompanying data
processing functions, and implements a model-based approach for combining
heterogeneous receptor response data sets. We used DoOR’s ‘modelRP’ function to
merge data sets where more than one existed for a given receptor. We then
estimated the KL on this merged response data using formula (1):

KL ¼
1

M

XM

i¼1

ri ��r
sr

� �4
( )

� 3; ð1Þ

where M is the number odorants tested, ri is the receptor response to the ith odorant,
�r is the overall mean response for the receptor and sr is the s.d. of responses the
given receptor66. To relate KL to Fst estimates, we took the average Fst across all SNPs
within a given receptor’s gene, and overall 10 pair-wise population comparisons.

Mapping residues onto protein models. The most extreme amino-acid-changing
SNPs (top 1% Fst or BayeScan candidates) in chemosensory proteins were mapped
onto three-dimensional protein model ‘templates’ by generating protein alignments
of each family, including the template sequence, using PROMALS3D67, locating the
equivalent position in the template sequence to each of the candidate selection
residues, followed by graphical visualization using VMD68. This mapping approach
provides a coarse-grained view of the location of candidate selection residues within
the proteins, as it is limited by the quality of the alignment of these divergent protein
families, and the quality and accuracy of the template structure. For IRs, we aligned
all D. melanogaster IRs, as well as D. melanogaster and selected mammalian iGluRs,
and used the X-ray crystal structure of the AMPA family iGluR GluA2 (PDB 3KG2)
as a template69. For ORs, we used an alignment of D. melanogaster, D. simulans,
D. sechellia, D. erecta and D. yakuba ORs20 with the evolutionary coupling-based
model of OR85b (version 140_12) as template41. For GRs, we used an alignment of
D. melanogaster, D. simulans, D. sechellia, D. erecta and D. yakuba GRs20; because
neither three-dimensional structure nor models exist, candidate residues were
mapped onto a snake plot representation using GR10b as template. For the OBPs, we
aligned all drosophilid OBPs70 (excluding Obp84a, Obp56c, Obp59b, Obp59a,
Obp83ef and Obp83c because of their unusual length), and used the X-ray crystal
structure of LUSH as the template (PDB: 2GT3)43 within PROMALS3D67.

PCR sequencing. Genomic DNA was extracted by crushing single flies in 50 ml of
DNA extraction buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 25 mM NaCl,
200 mg ml� 1 Proteinase K), incubating for 30 min at 37 �C, before inactivation of
Proteinase K with a 5-min incubation at 95 �C. Primers sequences are available in
Supplementary Table 6. PCR amplification followed standard protocols followed by
Sanger sequencing of the PCR amplicon.

Data availability. The sequence and annotation data that support the findings of
this study have been deposited in NCBI’s Sequence Read Archive, with the project
identifier SRP050151 (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=
SRP050151) (refs 23,26).
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