1,697 research outputs found

    Concurrent Backscatter Streaming from Batteryless and Wireless Sensor Tags with Multiple Subcarrier Multiple Access

    Get PDF
    This paper proposes a novel multiple access method that enables concurrent sensor data streaming from multiple batteryless, wireless sensor tags. The access method is a pseudo-FDMA scheme based on the subcarrier backscatter communication principle, which is widely employed in passive RFID and radar systems. Concurrency is realized by assigning a dedicated subcarrier to each sensor tag and letting all sensor tags backscatter simultaneously. Because of the nature of the subcarrier, which is produced by constant rate switching of antenna impedance without any channel filter in the sensor tag, the tag-to-reader link always exhibits harmonics. Thus, it is important to reject harmonics when concurrent data streaming is required. This paper proposes a harmonics rejecting receiver to allow simultaneous multiple subcarrier usage. This paper particularly focuses on analog sensor data streaming which minimizes the functional requirements on the sensor tag and frequency bandwidth. The harmonics rejection receiver is realized by carefully handling group delay and phase delay of the subcarrier envelope and the carrier signal to accurately produce replica of the harmonics by introducing Hilbert and inverse Hilbert transformations. A numerical simulator with Simulink and a hardware implementation with USRP and LabVIEW have been developed. Simulations and experiments reveal that even if the CIR before harmonics rejection is 0dB, the proposed receiver recovers the original sensor data with over 0.98 cross-correlation

    Performance Evaluation of Variable Bandwidth Channel Allocation Scheme in Multiple Subcarrier Multiple Access

    Get PDF
    Multiple Subcarrier Multiple Access (MSMA) enables concurrent sensor data streamings from multiple wireless and batteryless sensors using the principle of subcarrier backscatter used extensively in passive RFID. Since the interference cancellation performance of MSMA depends on the Signal to Interference plus Noise Ratio of each subcarrier, the choice of channel allocation scheme is essential. Since the channel allocation is a combinatorial problem, obtaining the true optimal allocation requires a vast amount of examinations which is impracticable in a system where we have tens of sensor RF tags. It is particularly true when we have variable distance and variable bandwidth sensor RF tags. This paper proposes a channel allocation scheme in the variable distance and variable bandwidth MSMA system based on a newly introduced performance index, total contamination power, to prioritize indecision cases. The performance of the proposal is evaluated with existing methods in terms of average communication capacity and system fairness using MATLAB Monte Carlo simulation to reveal its advantage. The accuracy of the simulation is also verified with the result obtained from the brute force method

    Achievable Secrecy Rates of an Energy Harvesting Device with a Finite Battery

    Get PDF
    In this paper, we investigate the achievable secrecy rates in an Energy Harvesting communication system composed of one transmitter and multiple receivers. In particular, because of the energy constraints and the channel conditions, it is important to understand when a device should transmit or not and how much power should be used. We introduce the Optimal Secrecy Policy in several scenarios. We show that, if the receivers demand high secrecy rates, then it is not always possible to satisfy all their requests. Thus, we introduce a scheme that chooses which receivers should be discarded. Also, we study how the system is influenced by the Channel State Information and, in particular, how the knowledge of the eavesdropper's channel changes the achievable rates
    corecore