11 research outputs found

    Self-Powered Gesture Recognition with Ambient Light

    Get PDF
    We present a self-powered module for gesture recognition that utilizes small, low-cost photodiodes for both energy harvesting and gesture sensing. Operating in the photovoltaic mode, photodiodes harvest energy from ambient light. In the meantime, the instantaneously harvested power from individual photodiodes is monitored and exploited as a clue for sensing finger gestures in proximity. Harvested power from all photodiodes are aggregated to drive the whole gesture-recognition module including a micro-controller running the recognition algorithm. We design robust, lightweight algorithm to recognize finger gestures in the presence of ambient light fluctuations. We fabricate two prototypes to facilitate user’s interaction with smart glasses and smart watches. Results show 99.7%/98.3% overall precision/recall in recognizing five gestures on glasses and 99.2%/97.5% precision/recall in recognizing seven gestures on the watch. The system consumes 34.6 µW/74.3 µW for the glasses/watch and thus can be powered by the energy harvested from ambient light. We also test system’s robustness under various light intensities, light directions, and ambient light fluctuations. The system maintains high recognition accuracy (\u3e 96%) in all tested settings

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Scheduling Tasks on Intermittently-Powered Real-Time Systems

    Get PDF
    Batteryless systems go through sporadic power on and off phases due to intermittently available energy; thus, they are called intermittent systems. Unfortunately, this intermittence in power supply hinders the timely execution of tasks and limits such devices’ potential in certain application domains, e.g., healthcare, live-stock tracking. Unlike prior work on time-aware intermittent systems that focuses on timekeeping [1, 2, 3] and discarding expired data [4], this dissertation concentrates on finishing task execution on time. I leverage the data processing and control layer of batteryless systems by developing frameworks that (1) integrate energy harvesting and real-time systems, (2) rethink machine learning algorithms for an energy-aware imprecise task scheduling framework, (3) develop scheduling algorithms that, along with deciding what to compute, answers when to compute and when to harvest, and (4) utilize distributed systems that collaboratively emulate a persistently powered system. Scheduling Framework for Intermittently Powered Computing Systems. Batteryless systems rely on sporadically available harvestable energy. For example, kinetic-powered motion detector sensors on the impalas can only harvest energy when the impalas are moving, which cannot be ascertained in advance. This uncertainty poses a unique real-time scheduling problem where existing real-time algorithms fail due to the interruption in execution time. This dissertation proposes a unified scheduling framework that includes both harvesting and computing. Imprecise Deep Neural Network Inference in Deadline-Aware Intermittent Systems. This dissertation proposes Zygarde- an energy-aware and outcome-aware soft-real-time imprecise deep neural network (DNN) task scheduling framework for intermittent systems. Zygarde leverages the semantic diversity of input data and layer-dependent expressiveness of deep features and infers only the necessary DNN layers based on available time and energy. Zygarde proposes a novel technique to determine the imprecise boundary at the runtime by exploiting the clustering classifiers and specialized offline training of the DNNs to minimize the loss of accuracy due to partial execution. It also proposes a single metric, η to represent a system’s predictability that measures how close a harvesterâs harvesting pattern is to a constant energy source. Besides, Zygarde consists of a scheduling algorithm that takes available time, available energy, impreciseness, and the classifier's performance into account. Scheduling Mutually Exclusive Computing and Harvesting Tasks in Deadline-Aware Intermittent Systems. The lack of sufficient ambient energy to directly power the intermittent systems introduces mutually exclusive computing and charging cycles of intermittently powered systems. This introduces a challenging real-time scheduling problem where the existing real-time algorithms fail due to the lack of interruption in execution time. To address this, this dissertation proposes Celebi, which considers the dynamics of the available energy and schedules when to harvest and when to compute in batteryless systems. Using data-driven simulation and real-world experiments, this dissertation shows that Celebi significantly increases the number of tasks that complete execution before their deadline when power was only available intermittently. Persistent System Emulation with Distributed Intermittent System. Intermittently-powered sensing and computing systems go through sporadic power-on and off periods due to the uncertain availability of energy sources. Despite the recent efforts to advance time-sensitive intermittent systems, such systems fail to capture important target events when the energy is absent for a prolonged time. This event miss limits the potential usage of intermittent systems in fault- intolerant and safety-critical applications. To address this problem, this dissertation proposes Falinks, a framework that allows a swarm of distributed intermittently powered nodes to collaboratively imitate the sensing and computing capabilities of a persistently powered system. This framework provides power-on and off schedules for the swamp of intermittent nodes which has no communication capability with each other.Doctor of Philosoph
    corecore