19 research outputs found

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signicantly more effcient.Warehouse Management, Order Picking, Order Batching, Iterated Local Search, Ant Colony Optimization

    ARTIFICIAL INTELLIGENCE APPLIED TO ASSIGNED MERCHANDISE LOCATION IN RETAIL SALES SYSTEMS

    Full text link

    Algorithms for On-line Order Batching in an Order-Picking Warehouse

    Get PDF
    In manual order picking systems, order pickers walk or ride through a distribution warehouse in order to collect items required by (internal or external) customers. Order batching consists of combining these – indivisible – customer orders into picking orders. With respect to order batching, two problem types can be distinguished: In off-line (static) batching all customer orders are known in advance. In on-line (dynamic) batching customer orders become available dynamically over time. This report considers an on-line order batching problem in which the total completion time of all customer orders arriving within a certain time period has to be minimized. The author shows how heuristic approaches for the off-line order batching can be modified in order to deal with the on-line situation. A competitive analysis shows that every on-line algorithm for this problem is at least 2-competitive. Moreover, this bound is tight if an optimal batching algorithm is used. The proposed algorithms are evaluated in a series of extensive numerical experiments. It is demonstrated that the choice of an appropriate batching method can lead to a substantial reduction of the completion time of a set of customer orders.Warehouse Management, Order Picking, Order Batching, On-line Optimization

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signi cantly more effcient

    Warehouse design: a systematic literature review

    Get PDF
    Abstract: This study proposes improving the understanding of the main aspects involved in the design of warehouses by the construction of a framework that reveals the state-of-art.  The initial research bibliography generated a framework, which was structured in three dimensions: inputs; design and implementation; and outputs. The validation of framework was accomplished through a systematic review of the literature, covering 68 articles published in the period 1999- 2015. This study covered the main aspects highlighted in the academic literature that influence the design of warehouses. Additionally, an overview of the publications based on a theoretical/empirical and a quantitative/qualitative approach was pointed out. This paper aims to contribute to both industry and academic. On the one hand, the framework aggregates value for professionals by permitting the rapid identification of variables, which must be considered in warehouse design. On the other hand, by systematizing the warehouse design area, researchers are able to identify gaps that may generate future studies.

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management

    A Study on Storage allocation problem based on clustering algorithms for the improvement of warehouse efficiency

    Get PDF
    The operation of warehouses has long been a focus of industry research. Faced with rapidly growing business needs, improving storage efficiency, and reducing customer response times have become crucial issues for improving the operational efficiency of a warehouse. Given a fixed area of space, optimizing the storage strategy can reduce the cost of goods handling, improve the efficiency of storage and delivery, accelerate the overall operational efficiency of the warehouse, and reduce logistical costs. In this paper we study the improvement of a real-life company’s storage location strategy using cluster and association analysis. Two different clustering techniques namely pairwise comparison clustering and K-means clustering are used, and their performances are compared with the current random storage policy used by the company. Both clustering algorithms consider item association and classify items into groups based on how frequently they appear with each other in customer's orders. The next stage applies assignment techniques to locate the clustered group in each aisle so as to minimize the total number of aisle visits and ultimately picking distance. By emphasizing the item association, our model is suitable for orders with multiple items in the modern retailing sector. It also more effectively shortens the picking distance compared with random assignment storage method. In our case, Warehouse studied herein, both models prove more effective as it reduces over 35% and 25 % of the picking distances versus the current set-up. However, when compared with each other the K-means clustering method outperforms the pairwise comparison

    Order Batching in Order Picking Warehouses: A Survey of Solution Approaches

    Get PDF
    Order picking is a warehouse function dealing with the retrieval of articles from their storage location in order to satisfy a given demand specified by customer orders. Of all warehouse operations, order picking is considered to include the most cost-intensive ones. Even though there have been different attempts to automate the picking process, manual order picking systems are still prevalent in practice. This article will focus on order batching, one of the main planning issues in order picking systems. Order Batching has been proven to be pivotal for the efficiency of order picking operations. With respect to the availability of information about the customer orders, order batching can be distinguished into static batching and dynamic batching. Improved order batching reduces the total picking time required to collect the requested articles. According to experience from practice, this can result in significant savings of labor cost and into a reduction of the customer order\u27s delivery lead time.The aim of this contribution is to provide comprehensive insights into order batching by giving a detailed state-of-the-art overview of the different solution approaches which have been suggested in the literature. Corresponding to the available publications, the emphasis will be on static order batching.In addition to this, the paper will also review the existing literature for variants and extensions of static order batching (e.g. due dates, alternative objective functions). Furthermore, solution approaches for dynamic order batching problems (like time window batching) will be presented

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions

    Modelo de otimização do espaço livre de armazenagem num silo de cereais

    Get PDF
    Este trabalho baseia-se num caso de estudo real de planeamento de operações de armazenagem num silo rural de cereais, e enquadra-se nos problemas de planeamento e programação de armazéns. Os programadores deparam-se diariamente com o problema de arranjar a melhor solução de transferência entre células de armazenagem, tentando maximizar o número de células vazias, por forma a ter maior capacidade para receber novos lotes, respeitando as restrições de receção e expedição, e as restrições de capacidade das linhas de transporte. Foi desenvolvido um modelo matemático de programação linear inteira mista e uma aplicação em Excel, com recurso ao VBA, para a sua implementação. Esta implementação abrangeu todo o processo relativo à atividade em causa, isto é, vai desde a recolha de dados, seu tratamento e análise, até à solução final de distribuição dos vários produtos pelas várias células. Os resultados obtidos mostram que o modelo otimiza o número de células vazias, tendo em conta os produtos que estão armazenados mais os que estão para ser rececionados e expedidos, em tempo computacional inferior a 60 segundos, constituindo, assim, uma importante mais valia para a empresa em causa.This work is based on a real case study for planning storage operations in a rural grain silo, and fits the problems of planning and programming of warehouses. Programmers are faced daily with the problem of finding the best solution for transfers between storage cells, trying to maximize the number of empty cells in order to have greater capacity to receive new lots, subject to receiving, dispatching, and transportation lines capacity constraints. We developed a mixed integer linear programming model and an Excel/VBA application for its implementation. This implementation included the entire process, ranging from data collection, its treatment and analysis to the final solution for the distribution of various products by various cells. The results show that the model optimizes the number of empty cells, in computation time less than 60 seconds, and thereby constitutes a significant added value to the company concerned
    corecore