1,726 research outputs found

    Batch scheduling of step deteriorating jobs

    Get PDF
    Author name used in this publication: T. C. E. ChengAuthor name used in this publication: C. T. Ng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Single machine parallel-batch scheduling with deteriorating jobs

    Get PDF
    AbstractWe consider several single machine parallel-batch scheduling problems in which the processing time of a job is a linear function of its starting time. We give a polynomial-time algorithm for minimizing the maximum cost, an O(n5) time algorithm for minimizing the number of tardy jobs, and an O(n2) time algorithm for minimizing the total weighted completion time. Furthermore, we prove that the problem for minimizing the weighted number of tardy jobs is binary NP-hard

    A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Get PDF
    This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model

    Non-identical parallel machines batch processing problem with release dates, due dates and variable maintenance activity to minimize total tardiness

    Full text link
    [EN] Combination of job scheduling and maintenance activity has been widely investigated in the literature. We consider a non-identical parallel machines batch processing (BP) problem with release dates, due dates and variable maintenance activity to minimize total tardiness. An original mixed integer linear programming (MILP) model is formulated to provide an optimal solution. As the problem under investigation is known to be strongly NP-hard, two meta-heuristic approaches based on Simulated Annealing (SA) and Variable Neighborhood Search (VNS) are developed. A constructive heuristic method (H) is proposed to generate initial feasible solutions for the SA and VNS. In order to evaluate the results of the proposed solution approaches, a set of instances were randomly generated. Moreover, we compare the performance of our proposed approaches against four meta heuristic algorithms adopted from the literature. The obtained results indicate that the proposed solution methods have a competitive behaviour and they outperform the other meta-heuristics in most instances. Although in all cases, H + SA is the most performing algorithm compared to the others.Beldar, P.; Moghtader, M.; Giret Boggino, AS.; Ansaripoord, AH. (2022). Non-identical parallel machines batch processing problem with release dates, due dates and variable maintenance activity to minimize total tardiness. Computers & Industrial Engineering. 168:1-28. https://doi.org/10.1016/j.cie.2022.10813512816

    A note on optimization in deteriorating systems using scheduling problems with the aging effect and resource allocation models

    Get PDF
    AbstractThis paper concerns scheduling problems with the aging effect and additional resource allocation. A measurable result of the aging phenomenon is that the time required to perform a job increases whereas the additional resource allocation allows one to decrease it. As an example of a deteriorating system that can be described and optimized by the application of the models and algorithms considered, we choose the pickling process, where cleaning of metal items decreases the efficiency of the pickling (cleaning) bath (i.e., one containing an active substance), whereas heating it up can improve the efficiency. In particular, we focus on the optimization problems for such systems and model them as single-machine scheduling problems with job processing times dependent on the fatigue of a machine and on the allocation of additional resources. The objectives considered are the minimization of time criteria (the maximum completion time and the maximum lateness) under a given resource consumption as well as the minimization of the resource consumption under given time criteria. The computational complexity of the problems is determined and solution properties are proved. On the basis of these, we construct optimal polynomial time algorithms for some cases of the problems considered

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic
    corecore