
Batch Scheduling of Step Deteriorating Jobs

M.S. Barketaua,b,c, T.C.E. Chengb,∗, C.T. Ngb,

Vladimir Kotova, Mikhail Y. Kovalyova,c

aBelarusian State University, Nezavisimosti 4, 220030 Minsk, Belarus

bDepartment of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong

Kong

cUnited Institute of Informatics Problems, National Academy of Sciences of Belarus,

Surganova 6, 220012 Minsk, Belarus

Abstract

In this paper we consider the problem of scheduling n jobs on a single machine, where the

jobs are processed in batches and the processing time of each job is a step function depending

on its waiting time, which is the time between the start of the processing of the batch to which

the job belongs and the start of the processing of the job. For job i, if its waiting time is

less than a given threshold value D, then it requires a basic processing time ai; otherwise, it

requires an extended processing time ai + bi. The objective is to minimize the completion time

of the last job. We first show that the problem is NP-hard in the strong sense even if all bi are

equal, it is NP-hard even if bi = ai for all i, and it is non-approximable in polynomial time with

a constant performance guarantee ∆ < 3/2 unless P = NP . We then present O(n log n) and

O(n3F−1 log n/F F ) algorithms for the case where all ai are equal and for the case where there are

F, F ≥ 2, distinct values of ai, respectively. We further propose an O(n2 log n) approximation

algorithm with a performance guarantee ∆ ≤ 1 + bm∗
2
c/m∗ ≤ 3/2 for the general problem,

where m∗ is the number of batches in an optimal schedule. All the above results apply or can

be easily modified for the corresponding open-end bin packing problem.

Key Words: batching, scheduling, deterioration, open-end bin packing.

∗Corresponding author

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61007603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Consider the production of custom industrial steel products such as vault doors or boiler covers,

whereby raw iron is first converted into a batch of iron ingots in an electric furnace. The ingots

are then sequentially processed on a machine into different products. An ingot has to reach a

threshold temperature before it can be processed by the machine into a product. The longer an

ingot waits for processing (i.e., the later it is processed by the machine), the cooler it becomes.

After waiting for a period of time, an ingot needs to be reheated to the threshold temperature

before the machine can work on it. Consequently, it requires extra time to produce each product

from an ingot that has waited longer than a certain time interval.

In this paper we study a scheduling model that deals with the above situation. In the next

section we formulate the problem, discuss its properties and give a literature review of the

related topics.

2 Problem description

There are jobs of the set N = {1, . . . , n} to be scheduled for processing on a single machine.

The jobs are processed in batches. Each batch is preceded by a setup time S. Job processing

times are time dependent as follows. Assume that a job i is assigned to a batch B, the first job

in the batch B starts its processing at time sB, and job i starts its processing at time si. The

processing time of job i is a step function depending on the difference si − sB :

pi =
{

ai, if si − sB < D,
ai + bi, if si − sB ≥ D.

Here D is a given threshold value. We call ai and ai + bi the basic and extended processing time

of job i, respectively. We also call a job with a basic processing time and an extended processing

time a basic and extended job, respectively. We call the last basic job in a batch a straddling job,

which means that it can straddle the threshold value D (but this does not necessarily occur).

The problem is to assign the jobs into batches and to sequence them so that the maximum job

completion time, Cmax = maxi{Ci}, is minimized, where Ci is the completion time of job i. We

denote this problem by 1|S, pi = ai + u1(si − sB −D)bi|Cmax, where u1(x) =
{

1, x ≥ 0,
0, x < 0

is the

Heaviside step function. All numerical data are assumed to be nonnegative integer numbers.

2



The described model falls into two categories: scheduling problems with start time de-

pendent processing times, and batch scheduling problems. These two categories of scheduling

problems have been extensively researched over the last two decades. However, to the best

of our knowledge, no work has been done on models combining both aspects of batching and

time-dependent processing times with regard to the start of the batch.

The first publication on scheduling jobs with start time dependent processing times was

due to Melnikov and Shafransky [11] in 1980. Surveys of this area of research can be found in

Gawiejnowicz [6], Aidaee and Wormer [1] and Cheng et al. [4]. In the classical model with start

time dependent job processing times, no batching is allowed and the job or operation processing

time is a nondecreasing function of its start time. A step function of the job processing time,

pi = ai + u1(si −D)bi, was studied by Alidaee and Womer [1] and Cheng and Ding [3] for the

single-machine environment. Cheng and Ding [3] presented enumeration algorithms for Cmax

and
∑

Ci minimization. Alidaee and Womer [1] suggested an O(n log n) algorithm to minimize

Cmax for the case where all ai = a. Our O(n log n) algorithm in Section 4 is similar to this

algorithm.

Batch scheduling problems have been reviewed by Potts and Kovalyov [12] and Allahverdi

et al. [2]. The batch scheduling models most relevant to this study were studied by Cheng et

al. [5] and Inderfurth et al. [7]. The objective functions in [5] include the costs for the number

of batches and for the delivery waiting times CB − Ci, where CB is the completion time of the

batch to which job i belongs. The model in [7] addresses a two-stage batching process of work

and re-work and incorporates the costs for the waiting times between the work and rework

operations on the same job.

An open-end bin packing problem studied by Leung et al. [10] is similar to the problem

1|S, pi = ai + u1(si − sB − D)bi|Cmax. In the former problem, n items with sizes a1, . . . , an

have to be packed into the minimum number of bins of the same capacity D. The “open-end”

characteristic is that if the capacity D of a bin is not tightly reached, then any item can be

placed in this bin. The open-end bin packing problem becomes a special case of the decision

version of the problem 1|S, pi = ai +u1(si−sB−D)bi|Cmax if we choose sufficiently large values

of bi such that only schedules with no extended jobs are acceptable. In this case, the problem

1|S, pi = ai + u1(si − sB −D)bi|Cmax reduces to minimizing the number of batches, subject to

3



no job is extended. Leung et al. [10] proved that the open-end bin packing problem is NP-hard

in the strong sense and presented a fully polynomial asymptotic approximation scheme based

on the algorithm of Karmarkar and Karp [8] for the classical bin packing problem.

The remaining part of the paper is organized as follows. In Section 3 we establish properties

of an optimal schedule for the problem 1|S, pi = ai + u1(si − sB −D)bi|Cmax. We further show

that the problem is NP-hard in the strong sense even if all bi are equal, it is NP-hard even if

bi = ai for all i, and it is non-approximable in polynomial time with a constant performance

guarantee ∆ < 3/2 unless P = NP . We present in Section 4 O(n log n) and O(n3F−1 log n/F F )

algorithms for the case where all ai are equal and for the case where there are F distinct values

of ai, respectively. In Section 5 we describe an O(n2 log n) approximation algorithm with a

performance guarantee ∆ ≤ 1 + dm∗−1
2
e/m∗ ≤ 3/2 for the general problem, where m∗ is the

number of batches in an optimal schedule. All the above results apply or can be easily modified

for the corresponding open-end bin packing problem. We summarize in Section 6 the results of

this paper and suggest directions for future research.

3 Properties of an optimal schedule and complexity re-

sults

We begin with establishing some useful properties of an optimal schedule for the problem under

study.

Given a schedule, denote by L (left), M (middle), and E (extended) the sets of the basic

non-straddling, straddling and extended jobs, respectively. Observe that for any schedule,

Cmax =
n∑

j=1

aj + mS +
∑

j∈E

bj,

where m is the number of batches. The variable part of the above formula is mS +
∑

j∈E bj.

Hence, the problem 1|S, pi = ai + u1(si − sB −D)bi|Cmax is equivalent to a modification of the

open-end bin packing problem, which is to minimize a linear combination of the number of bins

and the total weight of the non-packed items.

By the definition of the straddling job, |M | = m for a schedule with m batches. Further

properties are established in the following theorems.

4



Theorem 1 There exists an optimal schedule for the problem 1|S, pi = ai + u1(si − sB −
D)bi|Cmax that simultaneously satisfies the following properties:

(a) all the extended jobs are scheduled last in the last batch;

(b) the straddling jobs have the largest basic processing times ai among all the basic jobs;

(c) the straddling jobs have the largest bi values among all the straddling and extended jobs.

Proof. Since the positions of the extended jobs do not affect the variable part of the Cmax

value, there exists an optimal schedule satisfying property (a). Consider such a schedule and

assume that property (b) or property (c) does not hold for it. Then the set

VM = {i ∈ M | (∃j ∈ L : ai < aj) or (∃r ∈ E : bi < br)}

must be non-empty.

We now describe a job interchange technique that keeps the schedule optimal and satisfying

property (a), reduces the cardinality of the set VM and has a finite number of iterations. It is

obviously sufficient for the proof.

Let j∗ be a job in the set L with the largest aj value and let r∗ be a job in the set E with

the largest bj value. Consider i ∈ VM . This inclusion implies 1) ai < aj∗ or 2) bi < br∗ .

Consider case 1) ai < aj∗ . Interchange jobs i and j∗, i.e., reset L := (L\{j∗}) ∪ {i} and

M := (M\{i})∪ {j∗}. If bj∗ ≥ br∗ , then, by definition, we should reset VM := VM\{i} reducing

the cardinality of this set by one. If bj∗ < br∗ , then interchanging jobs j∗ and r∗ decreases the

makespan, which contradicts the optimality of the schedule. Thus, bj∗ ≥ br∗ .

Case 2) bi < br∗ similarly contradicts the optimality of the schedule.

Our next theorem shows that determining the straddling jobs is not a crucial issue in solving

the problem. Let the jobs be numbered in the order that a1 ≤ · · · ≤ an and bi ≥ bi+1 ≥ · · · ≥ bj

if ai = ai+1 = · · · = aj for 1 ≤ i < j ≤ n, which by analogy with the well-known Shortest

Processing Time (SPT) order, we call this the SPT order.

We skip considering a trivial situation where there exists an optimal schedule, in which

there is no basic non-straddling job, i.e., L = φ. In this case, due to Theorem 1, an optimal

schedule with m batches is such that the straddling jobs have the largest bi values among all

the jobs, and the remaining jobs are scheduled as extended in the last batch. Furthermore, an

optimal number of batches, denoted as m(L=φ), is equal to the number of values bi, i = 1, . . . , n,

5



such that bi > S. Corresponding schedule with m(L=φ) batches will always be considered as a

candidate for an optimal one. Thus, we assume that L 6= φ.

Theorem 2 There exists an optimal schedule for the problem 1|S, pi = ai + u1(si − sB −
D)bi|Cmax with m batches that satisfies property (a) in Theorem 1 and if k = max{i|i ∈ L},
then k ≤ n −m and the set M := M(k) comprises m jobs from the set {k + 1, k + 2, . . . , n}
with the largest values of bi.

Proof. Consider an optimal schedule with m batches that satisfies properties (a),(b) and (c)

in Theorem 1, and consider the corresponding job sets L, M and E. Let k0 = max{i|i ∈ L}.
Assume ak0−1 < ak0 , where a0 := −1. In this case, due to property (b), M ⊆ {k0 + 1, k0 +

2, . . . , n}, and due to property (c), M comprises m jobs of the latter set with the largest bj

values. Hence, k0 ≤ n−m and we can set k = k0.

It remains to consider the case ai0−1 < ai0 = ai0+1 = · · · = ak0−1 = ak0 . Denote J :=

{i0, i0 + 1, . . . , k0}. Let J = JME ∪ JL, where set JME comprises the straddling and extended

jobs in J, and set JL comprises the basic non-straddling jobs in J. Since the jobs in set J have

equal ai values, we can interchange them so that the jobs in set JL have the largest bi values

in set J, the jobs in set JME have the smallest bi values in set J, and the Cmax value of the

new schedule does not increase. Due to the original SPT job numbering, for this new optimal

schedule we have {i0, i0 + 1, . . . , i0 + |JL| − 1} ⊆ L and M ⊆ {i0 + |JL|, i0 + |JL| + 1, . . . , n}.
By property (c), set M comprises m jobs of the latter set with the largest bi values. Hence,

i0 + |JL| − 1 ≤ n−m and we can set k = i0 + |JL| − 1.

Theorem 2 shows that under the SPT numbering, the problem 1|S, pi = ai + u1(si − sB −
D)bi|Cmax reduces to n(n − 1)/2 subproblems, denoted as Π(m, k), m = 1, . . . , n − 1, k =

1, . . . , n − m, where the number of batches m and the largest non-straddling job index k =

max{j|j ∈ L} are fixed and the m straddling jobs in set M(k) are the jobs with the largest bi

values in the set {k + 1, . . . , n}. Problems Π(m, k) will be used to develop an approximation

algorithm for the problem 1|S, pi = ai + u1(si − sB −D)bi|Cmax in Section 5.

Observe that if a1 ≥ D, then no job can be basic non-straddling, and according to

Theorem 2, there exists an optimal schedule in which m jobs with the largest bj values

are straddling and the remaining jobs are extended. In this case, the problem 1|S, pi =

ai + u1(si − sB − D)bi|Cmax can be solved in O(n log n) time by comparing Cmax values of

6



the above mentioned schedules with m = 1, . . . , n batches. In the sequel, we assume that

a1 ≤ D − 1.

The following theorem consisting of three parts establishes that the problem under study is

computationally difficult with regard to finding exact and approximate solutions.

Theorem 3 The problem 1|S, pi = ai + u1(si − sB −D)bi|Cmax is

1) NP-hard in the strong sense even if bi = b, i = 1, . . . , n;

2) NP-hard even if bi = ai, i = 1, . . . , n;

3) non-approximable in polynomial time with a constant (independent of problem parameters)

performance guarantee ∆ < 3/2 unless P = NP even if bi = b, i = 1, . . . , n.

Proof. We use reductions from the strongly NP-complete problem 3-Partition and the

NP-complete problem Partition.

3-Partition: Given 3q + 1 positive integer numbers h1, . . . , h3q and H such that H/4 <

hi < H/2, i = 1, . . . , 3q, and
∑3q

i=1 hi = qH, is there a partition of the set {1, . . . , 3q} into q

disjoint sets X1, . . . , Xq such that
∑

i∈Xl
hi = H for l = 1, . . . , q?

Partition: Given q+1 positive integer numbers h1, . . . , hq and H such that
∑q

i=1 hi = 2H,

is there a subset X ⊂ Q := {1, . . . , q} such that
∑

i∈X hi = H?

Part 1). Given an instance of 3-Partition, we construct the following instance of the

problem 1|S, pi = ai + u1(si − sB − D)bi|Cmax with bi = b, i = 1, . . . , n. There are 4q jobs.

Among them there are 3q partition jobs with parameters ai = hi and bi = Y, i = 1, . . . , 3q, and

q enforcer jobs with parameters ai = H +1 and bi = Y, i = 3q+1, . . . , 4q, where Y := q(3H +1)

is an upper bound on the Cmax value. The setup time is S = H and the threshold value is

D = H + 1.

It can be easily verified that 3-Partition has a solution X1, . . . , Xq if and only if there

exists a schedule for the constructed instance of the problem 1|S, pi = ai+u1(si−sB−D)bi|Cmax

with value Cmax ≤ Y . Such a schedule is given in Fig. 1. There are q batches and no job is

extended in this schedule.

Part 2). Given an instance of Partition, construct the following instance of the problem

1|S, pi = ai + u1(si − sB −D)bi|Cmax with bi = ai, i = 1, . . . , n. There are q + 2 jobs. Among

them there are q partition jobs with parameters ai = bi = hi, i = 1, . . . , q, and two enforcer

7



S X1 3q+1

︷ ︸︸ ︷D

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H+1

S X2 3q+2

︷ ︸︸ ︷D

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H+1

· · · S Xq 4q

︷ ︸︸ ︷D

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H+1 Y

Figure 1: Structure of a schedule for part 1).

jobs q + 1 and q + 2 with parameters aq+1 = bq+1 = aq+2 = bq+2 = H + 1. The setup time is

S = H and the threshold value is D = H + 1.

It can be easily verified that Partition has a solution X if and only if there exists a

schedule for the constructed instance of the problem 1|S, pi = ai + u1(si− sB −D)bi|Cmax with

value Cmax ≤ 6H + 2. Such a schedule is given in Fig. 2. There are two batches and no job is

extended in this schedule.

S X q+1

︷ ︸︸ ︷D

S Q\X q+2

︷ ︸︸ ︷D

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H+1

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H+1

Figure 2: Structure of a schedule for part 2).

Part 3). Let C∗ denote the optimal solution value for the problem 1|S, pi = ai+u1(si−sB−
D)bi|Cmax. Assume that there exists a polynomial algorithm A for this problem that delivers a

solution with a value CA such that CA/C∗ ≤ ∆ for a given constant ∆ < 3/2.

To facilitate discussion, we introduce a new constant δ > 0 such that ∆ = 3/2− δ.

Observe that Partition remains NP-complete if we assume H ≥ 1/δ. Otherwise, all the

numbers in this problem are bounded by a constant and it becomes polynomially solvable.

Given an instance of Partition, in which H ≥ 1/δ, we construct the following instance

of the problem 1|S, pi = ai + u1(si − sB − D)bi|Cmax with bi = b, i = 1, . . . , n, denoted as I.

There are q + 2 jobs. Among them there are q partition jobs with parameters ai = hi, bi = H2,

i = 1, . . . , q, and two enforcer jobs q + 1 and q + 2 with parameters aq+1 = aq+2 = H + 1 and

bq+1 = bq+2 = H2. The setup time is S = H2 and the threshold value is D = H + 1.

It can be easily verified that Partition has a solution X if and only if there exists a

schedule for the instance I with value Cmax ≤ Y := 2H2 + 4H + 2. Such a schedule is given in

Fig. 3. There are two batches and no job is extended in this schedule.

8



S X q+1

︷ ︸︸ ︷D

︸ ︷︷ ︸
H2

︸ ︷︷ ︸
H

︸ ︷︷ ︸
H+1

S
︸ ︷︷ ︸

H2

Q\X
︸ ︷︷ ︸

H
︸ ︷︷ ︸

H+1

q+2

︷ ︸︸ ︷D

Y

Figure 3: Structure of a schedule for part 3).

Furthermore, if Partition does not have a solution, then at least one of the following three

cases takes place for any schedule in instance I: a) there is one batch and at least two extended

jobs, b) there are two batches and at least one extended job, and c) there are three or more

batches. In each of these cases, C∗ ≥ 3H2 + 4H + 2.

Apply algorithm A for the instance I. If Partition has a solution, then taking into account

C∗ ≤ Y and δ ≥ 1/H we obtain

CA ≤ ∆C∗ ≤ ∆Y = (3/2− δ)Y = 3H2 + 6H + 3− δ(2H2 + 4H + 2) < 3H2 + 4H + 2.

If Partition does not have a solution, then CA ≥ C∗ ≥ 3H2 + 4H + 2. Therefore, value CA

uniquely determines whether Partition has a solution or not. Since we assumed that this

value can be found in polynomial time, Partition can be solved in polynomial time as well,

which is unlikely unless P = NP .

Parts 1) and 3) in Theorem 3 imply the following corollary.

Corollary 1 The open-end bin packing problem is NP-hard in the strong sense and it is

non-approximable in polynomial time with a constant performance guarantee ∆ < 3/2 unless

P = NP.

Recall that the strong NP-hardness of the open-end bin packing problem has already been

known due to Leung et al. [10].

4 Polynomially solvable cases

We first assume that all the jobs have equal basic processing times: ai = a, i = 1, . . . , n. Similar

to Theorem 1, a job interchange technique can be used to show that under this assumption,

there exists an optimal schedule in which all the jobs are processed in the Longest Processing

Time (LPT) order of their extended processing times bi. Furthermore, each batch, with the

possible exception of the last batch, contains the same number of basic jobs, which is the

9



maximum number of basic jobs, denoted as k∗, permitted by the threshold value D : k∗ =

dD/ae. The problem reduces to finding the optimal number of batches, m∗. This discussion

justifies algorithm A given below.

Algorithm A (for the case ai = a, i = 1, . . . , n)

Step 1 (Initialization) Re-number the jobs so that b1 ≥ · · · ≥ bn. Calculate k∗ = dD
a
e and an

upper bound on the optimal number of batches, U = d n
k∗ e. Set the initial value m∗ = U.

Set m = 1.

Step 2 (Determination of m∗) If S ≥ ∑min{(m+1)k∗,n}
i=mk∗+1 bi, then re-set m∗ := m and stop. Oth-

erwise, re-set m := m + 1. If m = U, then stop (m∗ = U in this case); otherwise repeat

Step 2.

Theorem 4 Algorithm A solves the problem 1|S, pi = ai + u1(si− sB −D)bi|Cmax with ai = a,

i = 1, . . . , n, and runs in O(n log n) time.

Proof. A justification for algorithm A has already been given. The running time of this

algorithm is determined by sorting the jobs in the LPT order of their extended processing

times, which requires O(n log n) time.

Algorithm A is similar to the O(n log n) time algorithm of Alidaee and Womer [1] for

scheduling deteriorating jobs with no batching.

We now consider another special case of the problem in which there are F, F ≥ 2, distinct

basic processing times ai. Assume that the jobs are partitioned into F families such that family

f comprises nf jobs, denoted as (j, f), j = 1, . . . , nf , with the same basic processing time

a′f , f = 1, . . . , F. We have
∑F

f=1 nf = n. Assume without loss of generality that all a′f are

integer numbers. We present an enumeration algorithm, denoted as ENUM, for this special

case. It uses as a subroutine in the algorithm of Leung [9] for the following problem, denoted

as P (m,F ).

Problem P (m,F ) : Given F families of jobs such that family f comprises jobs with the

same processing time a′f , f = 1, . . . , F, can all these jobs be scheduled non-preemptively on

m parallel identical machines so that Cmax ≤ D − 1 for a given number D > 0? If they can,

construct corresponding schedule.

10



Problem P (m,F ) can be solved in O(n2(F−1) log m) time, where n is the total number of

jobs, see [9].

Assume that the jobs in each family f are numbered in the LPT order of their extended

processing times bi : b(1,f) ≥ b(2,f) ≥ · · · ≥ b(nf ,f), f = 1, . . . , F. Algorithm ENUM is justified by

the following observations, which were proved in Theorem 1 or can be similarly proved by a job

interchange technique. First, there exists an optimal schedule in which all the extended jobs

are scheduled last in the last batch. Second, the extended jobs and the straddling jobs are the

jobs with the largest indices in the same family. Third, the straddling jobs are the jobs with

the largest bi values among all the straddling and extended jobs, irrespective of their families.

We consider only schedules that satisfy these properties.

Algorithm ENUM

Step 1 Generate a set X0 of possible candidates for the set of the extended and straddling

jobs in an optimal schedule:

X0 := {X(x1,...,xF ) | xf = 1, . . . , nf + 1, f = 1, . . . , F},

where

X(x1,...,xF ) := {(j, f) | xf ≤ nf , j = xf , xf + 1, . . . , nf , f = 1, . . . , F}.

If xf = nf + 1, then no job of family f is present in the set X(x1,...,xF ).

The number of subsets X(x1,...,xF ) in the set X0, denoted as K(X0), can be evaluated as

K(X0) ≤ ∏F
f=1(nf + 1). Since

∑F
f=1 nf = n and

∏F
f=1 nf is maximized when nf = n/F,

f = 1, . . . , F, we further have K(X0) ≤ O(nF /F F ).

Let Σ∗ denote the set of the candidates for an optimal schedule. Initialize Σ∗ := φ.

For m = 1, . . . , n, perform Step 2.

Step 2 For a set X(x1,...,xF ) ∈ X0, perform the following computations.

Determine whether there exists a schedule such that the jobs of the set N\X(x1,...,xF ),

where N is the set of all jobs, can be scheduled as basic in this schedule. For these

purposes, solve the problem P (m,F ) with F families and the set of jobs N\X(x1,...,xF ). If

this problem has a solution, detect m jobs, denoted j1, . . . , jm, with the largest values bi in

11



the set X(x1,...,xF ) and create a schedule, denoted as σm
(x1,...,xF ). In this schedule, the jobs of

the set N\X(x1,...,xF ) are scheduled according to the solution of the problem P (m,F ), i.e.,

the jobs assigned to machine l are basic jobs in the batch l, l = 1, . . . , m, jobs j1, . . . , jm

are straddling, and the jobs of the set X(x1,...,xF )\{j1, . . . , jm} are extended. Calculate

Cmax(σ
m
(x1,...,xF )) = mS +

F∑

f=1

nfa
′
f +

∑

i∈X(x1,...,xF )\{j1,...,jm}
bi.

Add σm
(x1,...,xF ) to Σ∗. Remove X(x1,...,xF ) from X0 and repeat Step 2.

Step 3 Detect an optimal solution σ∗ such that Cmax(σ
∗) = min{Cmax(σ) | σ ∈ Σ∗}.

The time complexity of algorithm ENUM is determined by its Step 2, which is repeated

nK(X0) ≤ O(nF+1/F F ) times. One iteration of Step 2 requires O(n2(F−1) log m) time. There-

fore, the time complexity of algorithm ENUM is O(n3F−1 log n/F F ), which is polynomial if F

is a constant.

Since the open-end bin packing problem is a special case of the problem 1|S, pi = ai+u1(si−
sB −D)bi|Cmax with sufficiently large bi values, the following corollary holds.

Corollary 2 The open-end bin packing problem with ai = a, i = 1, . . . , n, is solvable in

O(n log n) time. It is solvable in O(n3F−1 log n/F F ) time if there are F, F ≥ 2, distinct item

sizes ai.

5 Approximation algorithm for the general problem

In this section we present an O(n2 log n) time approximation algorithm for the general problem

1|S, pi = ai + u1(si − sB −D)bi|Cmax with a performance guarantee ∆ ≤ 1 + bm∗
2
c/m∗ ≤ 3/2,

where m∗ is the number of batches in an optimal schedule. We assume without loss of generality

that the input data are all integer numbers. Recall that, given a schedule, L, M and E denote

the sets of the basic non-straddling, straddling and extended jobs, respectively.

Assume that the jobs are numbered in the SPT order such that a1 ≤ · · · ≤ an and bi ≥
bi+1 ≥ · · · ≥ bj if ai = ai+1 = · · · = aj for 1 ≤ i < j ≤ n.

We first present an approximation algorithm, denoted as APPROX(m, k), for problem

Π∗(m, k), in which there exists an optimal schedule with m batches and the largest basic

non-straddling job index k = max{j|j ∈ L}, k ≤ n − m, is fixed. Problem Π∗(m, k) differs

12



from problem Π(m, k) formulated in Section 3 in that the number of batches is required to be

equal to m only in an optimal schedule and the set M(k) of straddling jobs specified in Theo-

rem 2 applies to an optimal schedule only. A feasible schedule for this problem may have the

number of batches different from m and a different set M. Such a schedule will be constructed

by algorithm APPROX(m, k).

We additionally present algorithm APPROX(3, k, ρ), which is a subroutine in algorithm

APPROX(m, k). Algorithm APPROX(3, k, ρ) is an approximation algorithm for problem

Π∗(3, k, ρ), in which there exists an optimal schedule with three batches and the two largest

basic non-straddling job indices k and ρ are fixed. We describe algorithms APPROX(m, k) and

APPROX(3, k, ρ) in a similar fashion.

An optimal solution for one of at most n(n − 1)/2 problems Π∗(m, k), m = 1, . . . , n − 1,

k = 1, . . . , n − m, such that ak ≤ D − 1, is an optimal solution for the problem 1|S, pi =

ai + u1(si − sB − D)bi|Cmax (assuming m∗ 6= n). In the case ak ≥ D, job k cannot be basic

non-straddling by definition. By the same reason we assume ak ≤ D − 1 and aρ ≤ D − 1 in

problem Π∗(3, k, ρ).

In the algorithm APPROX(m, k), sets Qsmall and Qlarge of jobs are calculated and used for

the construction of an approximate schedule with at most m + bm
2
c batches, in which job k is

basic non-straddling, jobs of the set Qlarge ∪Qsmall are basic straddling and non-straddling, m

jobs of the set N\(Qsmall∪Qlarge∪{k}) with largest bj values are straddling and the remaining

jobs of the latter set are extended.

Similarly, in algorithm APPROX(3, k, ρ), sets Qsmall and Qlarge, |Qlarge| ≤ 1, are calculated

and used for the construction of an approximate schedule with at most four batches. In this

schedule jobs k and ρ are basic non-straddling, the only job of the set Qlarge (if |Qlarge| = 1) is

basic straddling, jobs of the set Qsmall are basic non-straddling and straddling (if |Qlarge| = 0),

three jobs of the set N\(Qsmall ∪ Qlarge ∪ {k} ∪ {ρ}) with the largest bj values are straddling

and the remaining jobs of the latter set are extended.

The batches are denoted as B1, B2, . . .

Algorithm APPROX(3, k, ρ) (for problem Π∗(3, k, ρ), ak ≤ D− 1, aρ ≤ D− 1, 1 ≤ ρ < k ≤
n− 3)

Step 1 (Initialization) Set Qsmall = φ, Qlarge = φ. If ρ = 1, then go to Step 4.

13



Calculate a′j = min{aj, dD
2
e}, j = 1, . . . , ρ− 1. Re-index jobs 1, . . . , ρ− 1 so that b1/a

′
1 ≥

· · · ≥ bρ−1/a
′
ρ−1. Set r = 1.

Step 2 (Computation of the sets Qsmall and Qlarge) If a′r < D/2, then add job r to the set

Qsmall. If a′r = dD
2
e, then add job r to the set Qlarge. If |Qlarge| = 1, then computation of

the set Qlarge is completed. Continue computation of the set Qsmall. If
∑

j∈Qsmall∪Qlarge
a′j ≤

m(D− 1)− (ak + aρ) and r ≤ ρ− 1, then re-set r = r + 1 and repeat Step 2. Otherwise,

if r = ρ − 1 or
∑

j∈Qsmall∪Qlarge
a′j > m(D − 1) − (ak + aρ), then computation of the sets

Qsmall and Qlarge is completed. Notice that |Qlarge| ≤ 1. If Qlarge = φ, then go to Step 4.

Step 3 (Assignment of the job of the set Qlarge) Assign the only job of the set Qlarge as

straddling to batch B4. Batch B4 is considered as open for the assignment of basic non-

straddling jobs.

Step 4 (Assignment of the jobs of the set Qsmall∪{k}∪{ρ}) Assign job k to batch B1. Assign

job ρ to batch B2. Assign jobs of the set Qsmall to the (open) batches B1, . . . , B4 in

increasing order of their indices by using the First Fit (FF) algorithm: a current job

j is assigned to the batch with the minimal index where it can be scheduled as basic

non-straddling or, if a job is assigned to batch B4 that contains no job from Qlarge, then

as straddling. Below we will prove that all the jobs from the set Qsmall can be scheduled

as it is indicated here.

Step 5 (Assignment of the jobs of the set N\(Qsmall ∪Qlarge ∪{k}∪ {ρ})) Select three jobs of

the set {k + 1, . . . , n} with the largest bj values and arbitrarily assign them as straddling

to batches B1, B2, B3.

Define all the remaining unassigned jobs as extended. They can be assigned to batch B4.

Compute the Cmax value of the constructed solution.

Algorithm APPROX(m, k) (for problem Π∗(m, k), ak ≤ D − 1, 1 ≤ k ≤ n−m)

Step 1 (Initialization) Set Qsmall = φ, Qlarge = φ. If k = 1, then go to Step 4.

Calculate a′j = min{aj, dD
2
e}, j = 1, . . . , k− 1. Re-index jobs 1, . . . , k− 1 so that b1/a

′
1 ≥

· · · ≥ bk−1/a
′
k−1. Set r = 1.

14



Step 2 (Computation of the sets Qsmall and Qlarge) If a′r < D/2, then add job r to the set

Qsmall. If a′r = dD
2
e and |Qlarge| ≤ m−2, then add job r to the set Qlarge. If |Qlarge| = m−1,

then computation of the set Qlarge is completed. Continue computation of the set Qsmall.

If
∑

j∈Qsmall∪Qlarge
a′j ≤ m(D − 1) − ak and r < k − 1, then re-set r = r + 1 and repeat

Step 2. Otherwise, if r = k− 1 or
∑

j∈Qsmall∪Qlarge
a′j > m(D− 1)− ak, then computation

of the sets Qsmall and Qlarge is completed. Notice that |Qlarge| ≤ m − 1. If Qlarge = φ,

then go to Step 4.

If |Qlarge| = 2 and m = 3, then call APROX(3, k, ρ) for every ρ = 1, . . . , k− 1, and select

the schedule with the smallest Cmax value as a solution. Stop.

Step 3 (Assignment of the jobs of the set Qlarge) First assign arbitrarily jobs of the set Qlarge

as straddling to the batches Bi, i = m + 1, . . . ,m + bm
2
c. If not all of the jobs of the

set Qlarge are assigned, then assign the remaining such jobs as basic non-straddling to

batches Bi, i = m + 1, . . . , m + bm
2
c. After this, if two, one and no job is assigned to

the same batch, then this batch is considered as closed, open for the assignment of basic

non-straddling jobs and open for the assignment of basic non-straddling and straddling

jobs, respectively. Notice that batches Bi, i = m + 1, . . . , m + bm
2
c, can accommodate all

the jobs from Qlarge because |Qlarge| ≤ m− 1 ≤ 2bm
2
c.

Step 4 (Assignment of the jobs of the set Qsmall ∪ {k}) Assign job k to batch B1. Assign jobs

of the set Qsmall to the (open) batches B1, . . . , Bm+bm
2
c in increasing order of their indices

by using the FF algorithm: a current job j is assigned to the batch with the minimal

index where it can be scheduled as basic non-straddling or, if a job is assigned to batch

Bi with i ≥ m + 1 that contains no job from Qlarge, then as straddling. Below we will

prove that all the jobs from the set Qsmall can be scheduled as indicated here.

Step 5 (Assignment of the jobs of the set N\(Qsmall ∪ Qlarge ∪ {k})) Select m jobs of the

set {k + 1, . . . , n} with the largest bj values and arbitrarily assign them as straddling to

batches B1, . . . , Bm.

Define all the remaining unassigned jobs as extended. They can be assigned to batch

Bm+bm
2
c. Compute the Cmax value of the constructed solution.

15



It is easy to see that, given a pair (m, k), the running time of either algorithm

APPROX(m, k) or APPROX(3, k, ρ) is O(n log n).

Denote the optimal Cmax value in problem Π∗(m, k) by C∗
max. Let L∗ and M∗ denote the

sets of basic non-straddling and basic straddling jobs, respectively, in an optimal schedule for

this problem, which satisfy Theorem 2.

The following theorems are used in establishing the performance guarantee of algorithm

APPROX(m, k).

Theorem 5 For the sets Qsmall and Qlarge constructed in Step 2 of the algorithm

APPROX(m, k), we have
∑

j∈Qsmall∪Qlarge
bj + bk ≥ ∑

j∈L∗ bj.

Proof. Consider a modification of problem Π∗(m, k), denoted as Π′(m, k), in which the basic

processing times of the jobs 1, . . . , k−1 are reset to a′j = min{aj, dD
2
e} for j = 1, . . . , k−1, and

a′j = aj for j = k, k + 1, . . . , n. Denote the optimal Cmax value of problem Π′(m, k) by C ′
max.

Since the basic processing times in the modified problem are not greater than those in the

original problem, we have C ′
max ≤ C∗

max.

Let L′ and M ′ denote the sets of basic non-straddling and straddling jobs, respectively, in

an optimal schedule for problem Π′(m, k), which satisfy Theorem 2. Since the parameters of

jobs k + 1, . . . , n are the same in problems Π′(m, k) and Π∗(m, k), we have M ′ = M∗.

Since the basic jobs in any schedule for problem Π∗(m, k) remain basic in the same schedule

for problem Π′(m, k), we have
∑

j∈L∗ bj ≤ ∑
j∈L′ bj.

It remains to show that
∑

j∈L′ bj ≤ ∑
j∈Qsmall∪Qlarge

bj + bk. Recall that the computation of

the sets Qsmall and Qlarge in Step 2 completes when 1)
∑

j∈Qsmall∪Qlarge
a′j ≤ m(D − 1) − ak or

2)
∑

j∈Qsmall∪Qlarge
a′j > m(D − 1)− ak.

In case 1), set Qsmall consists of all the jobs from the set {1, . . . , k − 1} with a′j < dD
2
e and

Qlarge consists of at most m − 1 jobs from this set with a′j = dD
2
e and the largest bj values.

Since L′ ⊆ {1, . . . , k} and L′ can contain at most m − 1 jobs with a′j = dD
2
e, we deduce that

∑
j∈L′ bj ≤ ∑

j∈Qsmall∪Qlarge
bj + bk, as required.

In case 2), first observe that
∑

j∈L′ a
′
j ≤ m(D − 1). Otherwise, at least one job in set

L′ is not basic non-straddling, which contradicts the definition of this set. Assume without

loss of generality that jobs in set L′ with a′j = dD
2
e have the largest bj values among all the

jobs with a′j = dD
2
e. Consider sets Q1 = (Qlarge ∪ Qsmall ∪ {k})\L′ and L′1 = L′\(Qlarge ∪

16



Qsmall ∪ {k}). From
∑

j∈L′ a
′
j ≤ m(D − 1) and

∑
j∈Qsmall∪Qlarge

a′j > m(D − 1) − ak, it follows

that
∑

j∈L′1
a′j <

∑
j∈Q1

a′j. Furthermore, maxj∈L′1{bj/a
′
j} ≤ minj∈Q1{bj/a

′
j} because of the job

ordering in algorithm APPROX(m, k). The latter two relations imply

∑

j∈L′1

bj ≤ min
j∈Q1

{bj/a
′
j}

∑

j∈L′1

a′j < min
j∈Q1

{bj/a
′
j}

∑

j∈Q1

a′j ≤
∑

j∈Q1

bj.

We deduce that
∑

j∈L′ bj <
∑

j∈Qsmall∪Qlarge
bj + bk, which completes the proof.

Theorem 6 For the sets Qsmall and Qlarge constructed in Step 2 of algorithm APPROX(3, k, ρ),

we have
∑

j∈Qsmall∪Qlarge
bj + bk + bρ ≥ ∑

j∈L∗ bj.

Proof. The proof is essentially the same as that for algorithm APPROX(m, k).

Theorem 7 Algorithm APPROX(m, k) (algorithm APPROX(3, k, ρ)) assigns all the jobs of

the sets Qlarge and Qsmall and job k (jobs k and ρ) to at most m + bm
2
c batches (four batches)

with job characteristics (basic non-straddling or straddling) as it is indicated in its description.

Proof. Note that algorithm APPROX(3, k, ρ) performs the same steps as algorithm

APPROX(m, k). The only difference is that in the former algorithm two largest basic non-

straddling jobs are fixed instead of one.

We will provide a proof for algorithm APPROX(m, k). The proof for algorithm

APPROX(3, k, r) is essentially the same except that some cases are not possible.

Assume that the statement of the theorem is not satisfied. Since the jobs of the set Qlarge

and job k are obviously assigned to the required batches, assume that at least one job of the

set Qsmall was not assigned to any (open) batch. It implies that each open batch except batch

B1 contains at least two jobs from Qsmall. This observation is used to prove the following facts.

Fact 1. The sum of a′i values of the non-straddling jobs in each open batch but one is at

least 2(D−1)
3

.

To prove Fact 1, assume that there are two open batches Bj and Br, j < r, and the sum of a′i

values of the non-straddling jobs in each of which is less than 2(D−1)
3

. Batch Br, r 6= 1, contains

not less than two non-straddling jobs. At least one of these jobs should have a processing time

less than (D−1)
3

. This leads to a contradiction: this job should have been assigned to batch Bj.

Fact 2. The sum of a′i values of the non-straddling jobs in any three open batches is at least

2(D − 1).

17



To prove Fact 2, consider open batches Bj, Br and Bv, j < r < v. Batch Bv, v 6= 1, contains

at least two non-straddling jobs. None of these jobs was assigned to batches Bj and Br because

an assignment of any such job to batch Bj or Br would make it closed for the assignment of

the basic non-straddling jobs (the sum of a′i values in the batch would be at least D− 1). This

means that the sum of a′i values of the non-straddling jobs in Bi ∪Bj ∪Bv is at least 2(D− 1).

Consider the last job that was included in the set Qlarge or Qsmall. Let it be job l. By the

definitions of the sets Qlarge and Qsmall,

∑

i∈Qlarge∪Qsmall

a′i + ak − a′l ≤ m(D − 1). (1)

There are the following two cases to consider:

1) l ∈ Qsmall and 2) l ∈ Qlarge.

Consider case 1). By our contradiction assumption, if some job from Qsmall was not assigned

to a batch, then job l was not assigned to any batch either. Let P0, P1 and P2 denote the sets

of batches from Bm+1, · · · , Bm+bm
2
c that contain no job from Qlarge, one job from Qlarge and two

jobs from Qlarge, respectively. We have |P0|+ |P1|+ |P2| = bm
2
c.

Taking into account Facts 1 and 2 and values a′i = dD
2
e of the straddling jobs from Qlarge in

P1, evaluate
∑

i∈B1∪···∪Bm∪P1
a′i ≥ 2(D−1)

3
(m+ |P1|)+ dD

2
e|P1|. Furthermore, by the definitions of

the sets P0 and P2 and because l was not assigned to any batch,
∑

i∈P0∪P2
a′i ≥ D(|P0|+ |P2|).

Recall that k ∈ B1. Calculate

∑

i∈Qsmall

a′i +
∑

i∈Qlarge

a′i + ak − a′l ≥ ∑

i∈B1∪···∪Bm∪P1

a′i +
∑

i∈P0∪P2

a′i

≥ 2(D − 1)

3
(m + |P1|) + dD

2
e|P1|+ D(|P0|+ |P2|)

>
2(D − 1)

3
(m + |P1|) +

D − 1

2
|P1|+ (D − 1)(|P0|+ |P2|)

≥ m(D − 1),

which contradicts (1). Therefore, l should have been assigned to a batch.

Consider case 2). In this case we consider two subcases, namely 2a): |P2| = bm
2
c and 2b):

|P2| < bm
2
c.

In the case 2a), all the jobs from Qlarge are assigned in pairs to batches Bm+1, . . . , Bbm
2
c.

Notice that m = 2|P2| + 1, |P0| = |P1| = 0. Let job u ∈ Qsmall be not assigned to any batch.

Consequently, in any open batch including the batch with the minimal sum of a′i values, denoted

18



as Bj∗ , the sum of a′i values of the basic non-straddling jobs plus a′u is greater than or equal to D.

Taking into account Fact 1, evaluate the sum
∑

i∈(B1∪···∪Bm)\Bj∗ a′i +
∑

i∈Bj∗ a′i +a′u ≥ 2(D−1)
3

(m−
1) + D. By the definition of set P2,

∑
i∈P2\Bm+bm

2 c
a′i +

∑
i∈Bm+bm

2 c
\{l} a′i ≥ D(bm

2
c − 1) + dD

2
e.

We have

∑

i∈Qsmall

a′i +
∑

i∈Qlarge

a′i + ak − a′l

≥ ∑

i∈(B1∪···∪Bm)\Bj∗
a′i +

∑

i∈Bj∗
a′i + a′u +

∑

i∈P2\Bm+bm
2 c

a′i +
∑

i∈Bm+bm
2 c
\{l}

a′i

≥ 2(D − 1)

3
(m− 1) + D + D(bm

2
c − 1) + dD

2
e

> (D − 1)(
2

3
(m− 1) + bm

2
c+

1

2
)

= (D − 1)(
4

3
|P2|+ |P2|+ 1

2
) = (D − 1)(2|P2|+ 1

2
+
|P2|
3

).

The latter expression is greater than or equal to (D − 1)m if m > 3, which contradicts (1).

Thus, job u must be assigned to some batch. In the case m = 3, algorithm APPROX(m, k)

calls for algorithm APPROX(3, k, ρ) which is designed so that |Qlarge| ≤ 1 and thus case 2a)

is not possible. In all other respects algorithm APPROX(3, k, ρ) coincides with algorithm

APPROX(m, k) and this proof can be used for its justification.

In case 2b), |P2| < bm
2
c and consequently, |P1| ≥ 1.

Again, let job u ∈ Qsmall be not assigned to any batch. Then in the batch Bj∗ the sum of a′i

values of basic non-straddling jobs plus a′u is greater than or equal to D. Making use of Fact 1,

evaluate
∑

i∈(B1∪···∪Bm∪P1)\Bj∗ a′i +
∑

i∈Bj∗ a′i +a′u−a′l ≥ 2(D−1)
3

(m+ |P1|−1)+D+dD
2
e(|P1|−1).

Taking into account that job u was not assigned to any batch from P0 and the definition of set

P2, evaluate
∑

i∈P0∪P2
a′i ≥ D(|P0|+ |P2|). We have

∑

i∈Qsmall

a′i +
∑

i∈Qlarge

a′i + ak − a′l

≥ ∑

i∈(B1∪···∪Bm∪P1)\Bj∗
a′i +

∑

i∈Bj∗
a′i + a′u − a′l +

∑

i∈P0∪P2

a′i

≥ 2(D − 1)

3
(m + |P1| − 1) + D + dD

2
e(|P1| − 1) + D(|P0|+ |P2|)

> (D − 1)(
2

3
(m + |P1| − 1) +

1

2
(|P1| − 1) + 1 + |P0|+ |P2|)

= (D − 1)(
2

3
m + |P0|+ |P1|+ |P2|+ |P1|

6
− 1

6
) ≥ (D − 1)m,

which contradicts (1). Thus, job u should have been assigned to some batch.

19



The performance guarantee of the algorithm APPROX(m, k) is given in the following the-

orem.

Theorem 8 Algorithm APPROX(m, k) finds a solution with a Cmax value of C ′ such that

C ′/C∗
max ≤ 1 + bm

2
c/m.

Proof. Consider an arbitrary schedule with m batches and job sets L (basic non-straddling)

and M (straddling). We use the following representation of the corresponding Cmax value:

Cmax =
∑

j∈N

(aj + bj) + mS − ∑

j∈L∪M

bj.

Let L∗ and M∗ be the sets of basic non-straddling and straddling jobs, respectively, in an

optimal schedule for problem Π∗(m, k), which satisfies Theorem 2. Let L and M be the sets

of basic non-straddling and straddling jobs, respectively, in the schedule found by algorithm

APPROX(m, k). Assume first that there was no call to algorithm APPROX(3, k, ρ).

We have

C ′

C∗
max

=

∑
j∈N(aj + bj) + (m + bm

2
c)S −∑

j∈L∪M bj∑
j∈N(aj + bj) + mS −∑

j∈L∗∪M∗ bj

=

∑
j∈N(aj + bj) + (m + bm

2
c)S −∑

j∈Qlarge∪Qsmall∪{k}∪M∗ bj∑
j∈N(aj + bj) + mS −∑

j∈L∗∪M∗ bj

[ due to Theorem 5 ]

≤
∑

j∈N(aj + bj) + (m + bm
2
c)S −∑

j∈L∗∪M∗ bj∑
j∈N(aj + bj) + mS −∑

j∈L∗∪M∗ bj

≤ (m + bm
2
c)S

mS
= 1 + bm

2
c/m.

In case there were calls to algorithm APPROX(3, k, ρ), the only difference is that Theorem 6

should be used instead of Theorem 5.

Our approximation algorithm for the problem 1|S, pi = ai+u1(si−sB−D)bi|Cmax, which we

denote as APPROX, consists of application of algorithm APPROX(m, k), in which the schedule

construction is skipped and only the corresponding Cmax value is calculated, for m = 1, . . . , n−1

and k = 1, . . . , n −m, and then constructing the final approximate schedule that corresponds

to the minimum Cmax value, denoted as C0
max, among the calculated Cmax values and the Cmax

value for an optimal schedule with no basic non-straddling job (see our discussion preceding

Theorem 2).

20



Let us establish the computational complexity of algorithm APPROX. Denote by R(m,k),

Q
(m,k)
large , Q

(m,k)
small and C(m,k)

max the set of the m jobs found by algorithm APPROX(m, k) in Step 5,

the sets Qlarge and Qsmall, and the Cmax value, respectively, found by this algorithm. We have

C(m,k)
max =

∑

j∈N

(aj + bj) + (m + bm
2
c)S − (

∑

j∈Q
(m,k)
large

∪Q
(m,k)
small

∪{k}
bj +

∑

j∈R(m,k)

bj)

and

C0
max = min

{
min{C(m,k)

max |m = 1, . . . , n− 1, k = 1, . . . , n−m}, C(L=φ)
max

}
,

where C(L=φ)
max is the makespan value of the schedule with no basic non-straddling job.

Thus, the value C0
max can be calculated in O(n2) time if we know the sums BQ(m,k) :=

∑
j∈Q

(m,k)
large

∪Q
(m,k)
small

bj and BR(m,k) :=
∑

j∈R(m,k) bj for m = 1, . . . , n− 1 and k = 1, . . . , n−m. The

corresponding approximate schedule can be constructed in O(n log n) time. In the following

two theorems we establish the computational complexity for calculating the above mentioned

sums.

Theorem 9 The sets Q
(m,k)
large ∪Q

(m,k)
small and the corresponding sums BQ(m,k) can be calculated in

O(n2 log n) time for all the pairs (m, k).

Proof. We provide a proof for the case m 6= 3. The case m = 3 can be handled similarly.

Calculate a′j = min{aj, dD
2
e}, j = 1, . . . , n. We maintain sets Q

(m,k)
large and Q

(m,k)
small as heaps of the

values bi/a
′
i. Our further proof is constructive: for a given m, we show how to construct the

heaps and calculate the corresponding sum of bj values for the pair (m, k + 1) based on the

same information for the pair (m, k).

With the two heaps, we store the cardinality of the set Q
(m,k)
large , denoted as q

(m,k)
large , and the

sums BQ
(m,k)
large =

∑
j∈Q

(m,k)
large

bj, BQ
(m,k)
small =

∑
j∈Q

(m,k)
small

bj and AQ
(m,k)
small :=

∑
j∈Q

(m,k)
small

a′j. By definition,

for the pair (m, 1) heaps Q
(m,1)
large and Q

(m,1)
small are empty. Therefore, q

(m,1)
large = 0 and BQ

(m,1)
large =

BQ
(m,1)
small = AQ

(m,1)
small = 0. Assume that the above mentioned information is given for the pair

(m, k), k ≥ 1.

Notice that jobs are assigned to the sets Q
(m,h)
large and Q

(m,h)
small in the same order (in non-

increasing bj/a
′
j values) for any h and only exceeding the upper bound (D − 1)m − ah on the

sum of the a′j values stops the assignment. An assignment to the set Q
(m,h)
large is also stopped

if the upper bound m − 1 on the cardinality of this set is reached. Due to the original SPT

21



numbering, we have ak ≤ ak+1. Therefore, Q
(m,k+1)
large ∪Q

(m,k+1)
small ⊆ Q

(m,k)
large ∪Q

(m,k)
small ∪ {k} and the

set Q
(m,k+1)
large ∪ Q

(m,k+1)
small can be obtained from the set Q

(m,k)
large ∪ Q

(m,k)
small ∪ {k} by removing jobs

with the smallest bj/a
′
j values until the number of the remaining “large” jobs with a′j = dD

2
e

is equal to m and the upper bound (D − 1)m− ak+1 on the sum of the a′j values is exceeded.

For these purposes, introduce auxiliary job sets (heaps) Q′
small and Q′

large. Initialize these heaps

as Q′
small = Q

(m,k)
small and Q′

large = Q
(m,k)
large . If a′k = dD

2
e, then add job k to the heap Q′

large and

calculate Q′
small = Q

(m,k)
small, q′ = q

(m,k)
large + 1 and Q′

large = Q
(m,k)
large ∪ {k}. If a′k < dD

2
e, then add job

k to the heap Q′
small and calculate Q′

large = Q
(m,k)
large , q′ = q

(m,k)
large and Q′

small = Q
(m,k)
small ∪ {k}. In

either case, calculate A′ :=
∑

j∈Q′
small

∪Q′
large

a′j. Apply the following procedure.

Procedure HEAPS (for calculating heaps Q
(m,k+1)
large and Q

(m,k+1)
small )

Step 1 If q′ = m, i.e., k is a “large” job, then remove from the heap Q′
large a “large” job with

the smallest value bj/a
′
j and re-set q′ := m− 1 and A′ := A′ − dD

2
e.

Step 2 If A′ ≤ (D − 1)m− ak+1, then, by definition, Q
(m,k+1)
small = Q′

small and Q
(m,k+1)
large = Q′

large.

Stop. Otherwise, if A′ > (D − 1)m− ak+1, then find a job with the smallest value bj/a
′
j

in the heaps Q′
small and Q′

large. Let it be job j0. If A′ − a′j0 ≤ (D − 1)m− ak+1, then, by

definition, Q
(m,k+1)
small = Q′

small and Q
(m,k+1)
large = Q′

large. Stop. If A′ − a′j0 > (D − 1)m− ak+1,

then remove job j0 from the set (Q′
large or Q′

small) it belongs to, re-set A′ := A′ − a′j0 and

repeat Step 2.

The output of procedure HEAPS is the heaps Q
(m,k+1)
large and Q

(m,k+1)
small and the associated nu-

merical values. Observe that each job can be added and removed to/from any of the considered

heaps at most once. Such an addition or removal takes O(log n) time. Finding an element with

the smallest value in a heap takes a constant time. Therefore, all the heaps Q
(m,h)
large and Q

(m,h)
small

and the associated values BQ(m,h) = BQ
(m,h)
large + BQ

(m,h)
small, h = 1, . . . , n − m, can be found in

O(n log n) time for a given m. The statement of the theorem immediately follows.

Theorem 10 The sets R(m,k) and the corresponding sums BR(m,k) =
∑

j∈R(m,k) bj can be cal-

culated in O(n2 log n) time for all the pairs (m, k).

Proof. Again, we provide a proof for m 6= 3. Recall that set R(m,k) comprises m jobs with the

largest bj values in the set {k + 1, . . . , n}. Similar to the previous theorem, we will maintain

22



the sets R(m,k) as heaps of the values bi. For a given m, we will show how to construct the heap

and calculate the corresponding sum of bj values for the pair (m, k − 1) based on the same

information about the pair (m, k).

Consider set R(m,n−m). By definition, R(m,n−m) = {n − m + 1, n − m + 2, . . . , n} and

BR(m,n−m) =
∑m

i=1 bn−m+i. Assume that set R(m,k) and the corresponding value BR(m,k) have

been found, k ≤ n−m. Introduce an auxiliary set (heap) R′. Initialize it as R′ := R(m,k) ∪{k}.
Calculate BR′ :=

∑
j∈R′ bj = BR(m,k) + bk. In the heap R′ find a job with the smallest bj value.

Let it be job j0. Calculate R(m,k−1) = R′\{j0} and BR(m,k−1) = BR′ − bj0 .

As in the previous theorem, each job can be added and removed to/from any of the consid-

ered heaps at most once. Such an addition or removal takes O(log n) time. Finding an element

with the smallest value in a heap takes a constant time. Therefore, all the heaps R(m,h) and

the associated values BR(m,h), h = 1, . . . , n −m, can be found in O(n log n) time for a given

m, and the statement of the theorem follows.

Let C∗ be the optimal makespan. We have proved the following theorem.

Theorem 11 Algorithm APPROX runs in O(n2 log n) time and finds a schedule with the

makespan value C0
max such that C0

max/C
∗ ≤ 1 + bm∗

2
c/m∗ ≤ 3/2, where m∗ is the number

of batches in an optimal schedule.

Proof. The proof follows from Theorems 8-10.

We remark that a similar approximation algorithm with a performance guarantee 3/2 can

be developed for the open-end bin packing problem. Since some of its technical details differ

from algorithm APPROX, we do not give its description in this paper.

6 Conclusions

We studied a batch scheduling problem with job deterioration. In this problem jobs are pro-

cessed in batches preceded by a setup time and the processing time of a job depends on the time

elapsed since the start of the batch to which the job belongs. If this waiting time for job i is

less than a given threshold value D, then the job requires a basic processing time ai; otherwise,

it requires an extended processing time ai + bi. The objective is to minimize the makespan. We

showed that the special case of this problem where bi = b is NP-hard in the strong sense, and

23



it is non-approximable with any constant performance guarantee ∆ < 3/2 in polynomial time

unless P = NP . For the case with equal basic processing times, ai = a, and the case with F

distinct basic processing times, we presented O(n log n) and O(n3F−1 log n/F F ) time solution

algorithms, respectively.

Let m∗ denote the number of batches in an optimal schedule. We further presented an

approximation O(n2 log n) time algorithm with a performance guarantee ∆ ≤ 1 + bm∗
2
c/m∗ ≤

3/2 for the general problem. All the results obtained in this paper can be applied or easily

adapted for the open-end bin packing problem.

Further research can be undertaken in the direction of developing approximation algorithms

with a good asymptotic behavior for the general problem 1|S, pi = ai+u1(si−sB−D)bi|Cmax and

its NP-hard special cases. A modification of the problem with a decreasing step deterioration

function instead of an increasing one is worth studying, too.

Acknowledgements

Barketau was supported in part by The Hong Kong Polytechnic University under an Interna-

tional Postgraduate Scholarship for PhD studies. Cheng and Ng were supported in part by

The Hong Kong Polytechnic University under a grant from the Area of Strategic Development

in China Business Services. Barketau and Kovalyov were partially supported by INTAS un-

der grant number 03-51-5501. Kotov was partially supported by INTAS under grant number

03-50-5975.

References

[1] Alidaee B., Womer N.K. (1999) Scheduling with time dependent processing times: review

and extensions, Journal of the Operational Research Society, 50, 711-720.

[2] Allahverdi A., Ng C.T., Cheng T.C.E., and Kovalyov M.Y. (2006) A review of scheduling

problems with setup times or costs, European Journal of Operational Research, in press,

available online 13 November 2006.

[3] Cheng T.C.E., Ding Q. (2001) Single machine scheduling with step-deteriorating processing

times, European Journal of Operational Research, 134, 623-630.

24



[4] Cheng T.C.E., Ding Q., Lin B.M.T. (2004) A concise survey of scheduling with time-

dependent processing times, European Journal of Operational Research, 152, 1-13.

[5] Cheng T.C.E., Gordon V.S., Kovalyov M.Y. (1996) Single machine scheduling with batch

deliveries, European Journal of Operations Research, 94, 277-283.

[6] Gawiejnowicz S. (1996) Brief survey of continuous models of scheduling, Foundations of

Computer and Decision Science, 21, 81-100.

[7] Inderfurth K., Janiak A., Kovalyov M.Y., Werner F. (2006) Batching work and rework

processes with limited deterioration of reworkables, Computers and Operations Research,

33, 1595-1605.

[8] Karmarkar N., Karp R.M. (1982) An efficient approximation scheme for the one-

dimensional bin packing problem, Proceedings of the 23rd Annual Symposium on Founda-

tions of Computer Science, IEEE Computer Society: Long Beach, CA, 312-320.

[9] Leung J.Y.-T. (1982) On scheduling independent tasks with restricted execution times,

Operations Research, 30, 163-171.

[10] Leung J.Y.-T., Dror M., Young G.H. (2001) A note on an open-end bin packing problem,

Journal of Scheduling, 4, 201-207.

[11] Melnikov O.I., Shafransky Y.M. (1980) Parametric problem of scheduling theory, Cyber-

netics, 15, 352-357, in Russian.

[12] Potts C.N., Kovalyov M.Y. (2000) Scheduling with batching: a review, European Journal

of Operational Research, 120, 228-249.

25




