24 research outputs found

    Fast Manipulability Maximization Using Continuous-Time Trajectory Optimization

    Full text link
    A significant challenge in manipulation motion planning is to ensure agility in the face of unpredictable changes during task execution. This requires the identification and possible modification of suitable joint-space trajectories, since the joint velocities required to achieve a specific endeffector motion vary with manipulator configuration. For a given manipulator configuration, the joint space-to-task space velocity mapping is characterized by a quantity known as the manipulability index. In contrast to previous control-based approaches, we examine the maximization of manipulability during planning as a way of achieving adaptable and safe joint space-to-task space motion mappings in various scenarios. By representing the manipulator trajectory as a continuous-time Gaussian process (GP), we are able to leverage recent advances in trajectory optimization to maximize the manipulability index during trajectory generation. Moreover, the sparsity of our chosen representation reduces the typically large computational cost associated with maximizing manipulability when additional constraints exist. Results from simulation studies and experiments with a real manipulator demonstrate increases in manipulability, while maintaining smooth trajectories with more dexterous (and therefore more agile) arm configurations.Comment: In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS'19), Macau, China, Nov. 4-8, 201

    Rethinking Trajectory Evaluation for SLAM: a Probabilistic, Continuous-Time Approach

    Full text link
    Despite the existence of different error metrics for trajectory evaluation in SLAM, their theoretical justifications and connections are rarely studied, and few methods handle temporal association properly. In this work, we propose to formulate the trajectory evaluation problem in a probabilistic, continuous-time framework. By modeling the groundtruth as random variables, the concepts of absolute and relative error are generalized to be likelihood. Moreover, the groundtruth is represented as a piecewise Gaussian Process in continuous-time. Within this framework, we are able to establish theoretical connections between relative and absolute error metrics and handle temporal association in a principled manner.Comment: Accepted at ICRA19 Workshop on Dataset Generation and Benchmarking of SLAM Algorithms for Robotics and VR/AR. Best paper awar

    Incremental Sparse GP Regression for Continuous-time Trajectory Estimation & Mapping

    Get PDF
    Recent work on simultaneous trajectory estimation and mapping (STEAM) for mobile robots has found success by representing the trajectory as a Gaussian process. Gaussian processes can represent a continuous-time trajectory, elegantly handle asynchronous and sparse measurements, and allow the robot to query the trajectory to recover its estimated position at any time of interest. A major drawback of this approach is that STEAM is formulated as a batch estimation problem. In this paper we provide the critical extensions necessary to transform the existing batch algorithm into an extremely efficient incremental algorithm. In particular, we are able to vastly speed up the solution time through efficient variable reordering and incremental sparse updates, which we believe will greatly increase the practicality of Gaussian process methods for robot mapping and localization. Finally, we demonstrate the approach and its advantages on both synthetic and real datasets.Comment: 10 pages, 10 figure
    corecore