2,000 research outputs found

    Neural Networks for Fast Optimisation in Model Predictive Control: A Review

    Full text link
    Model Predictive Control (MPC) is an optimal control algorithm with strong stability and robustness guarantees. Despite its popularity in robotics and industrial applications, the main challenge in deploying MPC is its high computation cost, stemming from the need to solve an optimisation problem at each control interval. There are several methods to reduce this cost. This survey focusses on approaches where a neural network is used to approximate an existing controller. Herein, relevant and unique neural approximation methods for linear, nonlinear, and robust MPC are presented and compared. Comparisons are based on the theoretical guarantees that are preserved, the factor by which the original controller is sped up, and the size of problem that a framework is applicable to. Research contributions include: a taxonomy that organises existing knowledge, a summary of literary gaps, discussion on promising research directions, and simple guidelines for choosing an approximation framework. The main conclusions are that (1) new benchmarking tools are needed to help prove the generalisability and scalability of approximation frameworks, (2) future breakthroughs most likely lie in the development of ties between control and learning, and (3) the potential and applicability of recently developed neural architectures and tools remains unexplored in this field.Comment: 34 pages, 6 figures 3 tables. Submitted to ACM Computing Survey

    Receding horizon control of vectored thrust flight experiment

    Get PDF
    Abstract: The application of a constrained receding horizon control technique to stabilise an indoor vectored-thrust flight experiment, known as the Caltech ducted fan, is given. The receding horizon control problem is formulated as a constrained optimal control problem and solved in real time with an efficient, computational method that combines nonlinear control theory, B-spline basis functions, and nonlinear programming. Characteristic issues, including non-zero computational times, convergence properties, choice of horizon length and terminal cost are discussed. The study validates the applicability of real-time receding horizon control for constrained systems with fast dynamics

    Discrete-Time Model Predictive Control

    Get PDF
    • …
    corecore