28,818 research outputs found

    Minimization via duality

    Get PDF
    We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object

    Graded Lagrangians, exotic topological D-branes and enhanced triangulated categories

    Get PDF
    I point out that (BPS saturated) A-type D-branes in superstring compactifications on Calabi-Yau threefolds correspond to {\em graded} special Lagrangian submanifolds, a particular case of the graded Lagrangian submanifolds considered by M. Kontsevich and P. Seidel. Combining this with the categorical formulation of cubic string field theory in the presence of D-branes, I consider a collection of {\em topological} D-branes wrapped over the same Lagrangian cycle and {\em derive} its string field action from first principles. The result is a {\em Z\Z-graded} version of super-Chern-Simons field theory living on the Lagrangian cycle, whose relevant string field is a degree one superconnection in a Z\Z-graded superbundle, in the sense previously considered in mathematical work of J. M. Bismutt and J. Lott. This gives a refined (and modified) version of a proposal previously made by C. Vafa. I analyze the vacuum deformations of this theory and relate them to topological D-brane composite formation, by using the general formalism developed in a previous paper. This allows me to identify a large class of topological D-brane composites (generalized, or `exotic' topological D-branes) which do not admit a traditional description. Among these are objects which correspond to the `covariantly constant sequences of flat bundles' considered by Bismut and Lott, as well as more general structures, which are related to the enhanced triangulated categories of Bondal and Kapranov. I also give a rough sketch of the relation between this construction and the large radius limit of a certain version of the `derived category of Fukaya's category'.Comment: 31 pages, 4 figures, minor typos corrected; v3: changed to JHEP styl

    From Simple to Complex and Ultra-complex Systems:\ud A Paradigm Shift Towards Non-Abelian Systems Dynamics

    Get PDF
    Atoms, molecules, organisms distinguish layers of reality because of the causal links that govern their behavior, both horizontally (atom-atom, molecule-molecule, organism-organism) and vertically (atom-molecule-organism). This is the first intuition of the theory of levels. Even if the further development of the theory will require imposing a number of qualifications to this initial intuition, the idea of a series of entities organized on different levels of complexity will prove correct. Living systems as well as social systems and the human mind present features remarkably different from those characterizing non-living, simple physical and chemical systems. We propose that super-complexity requires at least four different categorical frameworks, provided by the theories of levels of reality, chronotopoids, (generalized) interactions, and anticipation
    • …
    corecore