27,615 research outputs found

    Green's functions for multiply connected domains via conformal mapping

    Get PDF
    A method is described for the computation of the Green's function in the complex plane corresponding to a set of K symmetrically placed polygons along the real axis. An important special case is a set of K real intervals. The method is based on a Schwarz-Christoffel conformal map of the part of the upper half-plane exterior to the problem domain onto a semi-infinite strip whose end contains K-1 slits. From the Green's function one can obtain a great deal of information about polynomial approximations, with applications in digital filters and matrix iteration. By making the end of the strip jagged, the method can be generalised to weighted Green's functions and weighted approximations

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Linear Self-Motion Cues Support the Spatial Distribution and Stability of Hippocampal Place Cells

    Get PDF
    The vestibular system provides a crucial component of place-cell and head-direction cell activity [1-7]. Otolith signals are necessary for head-direction signal stability and associated behavior [8, 9], and the head-direction signal's contribution to parahippocampal spatial representations [10-14] suggests that place cells may also require otolithic information. Here, we demonstrate that self-movement information from the otolith organs is necessary for the development of stable place fields within and across sessions. Place cells in otoconia-deficient tilted mice showed reduced spatial coherence and formed place fields that were located closer to environmental boundaries, relative to those of control mice. These differences reveal an important otolithic contribution to place-cell functioning and provide insight into the cognitive deficits associated with otolith dysfunction
    corecore