73,013 research outputs found

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014

    Hybrid model using logit and nonparametric methods for predicting micro-entity failure

    Get PDF
    Following the calls from literature on bankruptcy, a parsimonious hybrid bankruptcy model is developed in this paper by combining parametric and non-parametric approaches.To this end, the variables with the highest predictive power to detect bankruptcy are selected using logistic regression (LR). Subsequently, alternative non-parametric methods (Multilayer Perceptron, Rough Set, and Classification-Regression Trees) are applied, in turn, to firms classified as either “bankrupt” or “not bankrupt”. Our findings show that hybrid models, particularly those combining LR and Multilayer Perceptron, offer better accuracy performance and interpretability and converge faster than each method implemented in isolation. Moreover, the authors demonstrate that the introduction of non-financial and macroeconomic variables complement financial ratios for bankruptcy prediction

    Grammar-Guided Genetic Programming For Fuzzy Rule-Based Classification in Credit Management

    Get PDF

    Financial-distress prediction of Islamic banks using tree-based stochastic techniques

    Get PDF
    Purpose Financial distress is a socially and economically important problem that affects companies the world over. Having the power to better understand – and hence aid businesses from failing, has the potential to save not only the company, but also potentially prevent economies from sustained downturn. Although Islamic banks constitute a fraction of total banking assets, their importance have been substantially increasing, as their asset growth rate has surpassed that of conventional banks in recent years. The paper aims to discuss these issues. Design/methodology/approach This paper uses a data set comprising 101 international publicly listed Islamic banks to work on advancing financial distress prediction (FDP) by utilising cutting-edge stochastic models, namely decision trees, stochastic gradient boosting and random forests. The most important variables pertaining to forecasting corporate failure are determined from an initial set of 18 variables. Findings The results indicate that the “Working Capital/Total Assets” ratio is the most crucial variable relating to forecasting financial distress using both the traditional “Altman Z-Score” and the “Altman Z-Score for Service Firms” methods. However, using the “Standardised Profits” method, the “Return on Revenue” ratio was found to be the most important variable. This provides empirical evidence to support the recommendations made by Basel Accords for assessing a bank’s capital risks, specifically in relation to the application to Islamic banking. Originality/value These findings provide a valuable addition to the limited literature surrounding Islamic banking in general, and FDP pertaining to Islamic banking in particular, by showcasing the most pertinent variables in forecasting financial distress so that appropriate proactive actions can be taken. </jats:sec
    • 

    corecore