12 research outputs found

    Bandlimited Intensity Modulation

    Get PDF
    In this paper, the design and analysis of a new bandwidth-efficient signaling method over the bandlimited intensity-modulated direct-detection (IM/DD) channel is presented. The channel can be modeled as a bandlimited channel with nonnegative input and additive white Gaussian noise (AWGN). Due to the nonnegativity constraint, standard methods for coherent bandlimited channels cannot be applied here. Previously established techniques for the IM/DD channel require bandwidth twice the required bandwidth over the conventional coherent channel. We propose a method to transmit without intersymbol interference in a bandwidth no larger than the bit rate. This is done by combining Nyquist or root-Nyquist pulses with a constant bias and using higher-order modulation formats. In fact, we can transmit with a bandwidth equal to that of coherent transmission. A trade-off between the required average optical power and the bandwidth is investigated. Depending on the bandwidth required, the most power-efficient transmission is obtained by the parametric linear pulse, the so-called "better than Nyquist" pulse, or the root-raised cosine pulse.Comment: 28 pages 10 Figure

    Real Time Implementation of CAP Modulation With “Better-Than-Nyquist” Pulse Shaping in Visible Light Communications

    Get PDF
    In this letter we experimentally verify a real-time implementation of the ‘better-than-Nyquist’ pulse shape in carrier-less amplitude and phase (CAP) modulation in the context of a visible light communications system. We use two National Instruments universal software radio peripherals (USRPs) as a transmitter and receiver working independently. Previously reported experimental work on pulse shaping in CAP is also verified in real time, showing lower error vector magnitudes (EVM) can be obtained at shorter filter lengths using the better-than-Nyquist pulses in place of the conventionally used square-root raised cosine as the basis function of the signal. We show that a real time EVM penalty is an additional 3% EVM in the worst case and is a result of synchronisation offset at the receiver

    Duobinary Modulation for Visible Light Communications

    Get PDF
    The paper proposes and experimentally investigates the performance of the duobinary transmission technique for a highly bandlimited VLC system. By adding a controlled amount of inter-symbol interference (ISI) into the transmitted signals through the use of pulse shaping filters, data rate can be doubled within the same signal bandwidth. To gain full insight into duobinary signalling, the so-called modified binary scheme is also tested. Bit error rate (BER) performance of both systems is measured for a range of data rates and compared to BERs for ideal binary and traditional on-off keying non-return to zero (OOK-NRZ) formats, across the same physical link. We show the duobinary system can support higher bit rates and lower BER than OOK-NRZ while requiring half the bandwidth of the binary scheme

    When to Use Optical Amplification in Noncoherent Transmission: An Information-Theoretic Approach

    Get PDF
    The standard solution for short-haul fiber-optic communications is to deploy noncoherent systems, i.e., to modulate and detect only the light intensity. In such systems, the signal is corrupted with optical noise from amplifiers and with thermal (electrical) noise. The capacity of noncoherent optical links has been studied extensively in the presence of either optical noise or thermal noise. In this paper, for the first time, we characterize the capacity under an average power constraint with both noise sources by establishing upper and lower bounds. In the two extreme cases of zero optical noise or zero thermal noise, we assess our bounds against some well-known results in the literature; improvements in both cases are observed. Next, for amplified fiber-optic systems, we study the trade-off between boosting signal energy (mitigating the effects of thermal noise) and adding optical noise. For a wide spectrum of system parameters and received power levels, we determine the optimal amplification gain. While mostly either no amplification or high-gain amplification is optimal, the best performance is for some parameter intervals achieved at finite gains

    Signaling for Optical Intensity Channels

    Get PDF
    With the growing popularity of social media services, e-commerce, and many other internet-based services, we are witnessing a rapid growth in the deployment of data centers and cloud computing platforms. As a result, the telecommunications industry has to continue providing additional network capacity to meet the increasing demand for bandwidth. The use of fiber-optic communications plays a key role in meeting this demand. Coherent optical transceivers improve spectral efficiency by allowing the use of multilevel in-phase and quadrature (I/Q) modulation formats, which encode information onto the optical carrier’s amplitude and phase. However, for short-haul optical links, using noncoherent optical transceivers, also known as intensity-modulated direct-detection (IM/DD) systems, is a more attractive low-cost approach. Since only the intensity of light can carry information, designing power- and spectrally-efficient modulation formats becomes challenging. Subcarrier modulation, a concept studied in wireless infrared communications, allows the use of I/Q modulation formats with IM/DD systems at the expense of power and spectral efficiency. This thesis addresses the problem of optimizing single-subcarrier modulation formats for noncoherent fiber and wireless optical communication systems in order to achieve a good trade-off between spectral efficiency, power efficiency, and cost/complexity. For the single-subcarrier three-dimensional signal space, denoted as raised-QAM in the literature, we propose a set of 4-, 8-, and 16-level modulation formats which are numerically optimized for average electrical, average optical, and peak power. In the absence of error-correcting codes, the optimized formats offer gains ranging from 0.6 to 3 dB compared to the best known formats. However, when error-correcting codes with performance near capacity are present, the obtained modulation formats offer gains ranging from 0.3 to 1 dB compared to previously known formats. In addition, laboratory experiments using the obtained 4- and 8-ary modulation formats were carried out. The performance improvement over the previously known formats conforms with the theoretical results. To address transceiver complexity, a two-dimensional signal space for optical IM/DD systems is proposed. The resulting modulation formats have simpler modulator and demodulator structures than the three-dimensional formats. Their spectra have in general narrower main lobes but slower roll-off, which make them a good choice for single-wavelength optical systems. The three-dimensional formats are more suitable for wavelength-division multiplexing systems, where crosstalk between adjacent channels is important

    Mapping multiplexing technique (MMT): a novel intensity modulated transmission format for high-speed optical communication systems

    Get PDF
    There is a huge rapid growth in the deployment of data centers, mainly driven from the increasing demand of internet services as video streaming, e-commerce, Internet Of Things (IOT), social media, and cloud computing. This led data centers to experience an expeditious increase in the amount of network traffic that they have to sustain due to requirement of scaling with the processing speed of Complementary metal–oxide–semiconductor (CMOS) technology. On the other side, as more and more data centers and processing cores are on demand, as the power consumption is becoming a challenging issue. Unless novel power efficient methodologies are innovated, the information technology industry will be more liable to a future power crunch. As such, low complex novel transmission formats featuring both power efficiency and low cost are considered the major characteristics enabling large-scale, high performance data transmission environment for short-haul optical interconnects and metropolitan range data networks. In this thesis, a novel high-speed Intensity-Modulated Direct-Detection (IM/DD) transmission format named “Mapping Multiplexing Technique (MMT)” for high-speed optical fiber networks, is proposed and presented. Conceptually, MMT design challenges the high power consumption issue that exists in high-speed short and medium range networks. The proposed novel scheme provides low complex means for increasing the power efficiency of optical transceivers at an impactful tradeoff between power efficiency, spectral efficiency, and cost. The novel scheme has been registered as a patent (Malaysia PI2012700631) that can be employed for applications related but not limited to, short-haul optical interconnects in data centers and Metropolitan Area networks (MAN). A comprehensive mathematical model for N-channel MMT modulation format has been developed. In addition, a signal space model for the N-channel MMT has been presented to serve as a platform for comparison with other transmission formats under optical channel constraints. Especially, comparison with M-PAM, as meanwhile are of practical interest to expand the capacity for optical interconnects deployment which has been recently standardized for Ethernet IEEE 802.3bs 100Gb/s and in today ongoing investigation activities by IEEE 802.3 400Gb/s Ethernet Task Force. Performance metrics have been considered by the derivation of the average electrical and optical power for N-channel MMT symbols in comparison with Pulse Amplitude Modulation (M-PAM) format with respect to the information capacity. Asymptotic power efficiency evaluation in multi-dimensional signal space has been considered. For information capacity of 2, 3 and 4 bits/symbol, 2-channel, 3-channel and 4-channel MMT modulation formats can reduce the power penalty by 1.76 dB, 2.2 dB and 4 dB compared with 4-PAM, 8-PAM and 16-PAM, respectively. This enhancement is equivalent to 53%, 60% and 71% energy per bit reduction to the transmission of 2, 3 and 4 bits per symbol employing 2-, 3- and 4-channel MMT compared with 4-, 8- and 16-PAM format, respectively. One of the major dependable parameters that affect the immunity of a modulation format to fiber non-linearities, is the system baud rate. The propagation of pulses in fiber with bitrates in the order > 10G, is not only limited by the linear fiber impairments, however, it has strong proportionality with fiber intra-channel non-linearities (Self Phase Modulation (SPM), Intra-channel Cross-Phase Modulation (IXPM) and Intra-channel Four-Wave Mixing (IFWM)). Hence, in addition to the potential application of MMT in short-haul networks, the thesis validates the practicality of implementing N-channel MMT system accompanied by dispersion compensation methodologies to extend the reach of error free transmission (BER ≀ 10-12) for Metro-networks. N-Channel MMT has been validated by real environment simulation results to outperform the performance of M-PAM in tolerating fiber non-linearities. By the employment of pre-post compensation to tolerate both residual chromatic dispersion and non-linearity, performance above the error free transmission limit at 40Gb/s bit rate have been attained for 2-, 3- and 4-channel MMT over spans lengths of up to 1200Km, 320 Km and 320 Km, respectively. While, at an aggregated bit rate of 100 Gb/s, error free transmission can be achieved for 2-, 3- and 4-channel MMT over spans lengths of up to 480 Km, 80 Km and 160 Km, respectively. At the same spectral efficiency, 4-channel MMT has realized a single channel maximum error free transmission over span lengths up to 320 Km and 160 Km at 40Gb/s and 100Gb/s, respectively, in contrast with 4-PAM attaining 240 Km and 80 Km at 40Gb/s and 100Gb/s, respectively

    Mapping multiplexing technique (MMT): a novel intensity modulated transmission format for high-speed optical communication systems

    Get PDF
    There is a huge rapid growth in the deployment of data centers, mainly driven from the increasing demand of internet services as video streaming, e-commerce, Internet Of Things (IOT), social media, and cloud computing. This led data centers to experience an expeditious increase in the amount of network traffic that they have to sustain due to requirement of scaling with the processing speed of Complementary metal–oxide–semiconductor (CMOS) technology. On the other side, as more and more data centers and processing cores are on demand, as the power consumption is becoming a challenging issue. Unless novel power efficient methodologies are innovated, the information technology industry will be more liable to a future power crunch. As such, low complex novel transmission formats featuring both power efficiency and low cost are considered the major characteristics enabling large-scale, high performance data transmission environment for short-haul optical interconnects and metropolitan range data networks. In this thesis, a novel high-speed Intensity-Modulated Direct-Detection (IM/DD) transmission format named “Mapping Multiplexing Technique (MMT)” for high-speed optical fiber networks, is proposed and presented. Conceptually, MMT design challenges the high power consumption issue that exists in high-speed short and medium range networks. The proposed novel scheme provides low complex means for increasing the power efficiency of optical transceivers at an impactful tradeoff between power efficiency, spectral efficiency, and cost. The novel scheme has been registered as a patent (Malaysia PI2012700631) that can be employed for applications related but not limited to, short-haul optical interconnects in data centers and Metropolitan Area networks (MAN). A comprehensive mathematical model for N-channel MMT modulation format has been developed. In addition, a signal space model for the N-channel MMT has been presented to serve as a platform for comparison with other transmission formats under optical channel constraints. Especially, comparison with M-PAM, as meanwhile are of practical interest to expand the capacity for optical interconnects deployment which has been recently standardized for Ethernet IEEE 802.3bs 100Gb/s and in today ongoing investigation activities by IEEE 802.3 400Gb/s Ethernet Task Force. Performance metrics have been considered by the derivation of the average electrical and optical power for N-channel MMT symbols in comparison with Pulse Amplitude Modulation (M-PAM) format with respect to the information capacity. Asymptotic power efficiency evaluation in multi-dimensional signal space has been considered. For information capacity of 2, 3 and 4 bits/symbol, 2-channel, 3-channel and 4-channel MMT modulation formats can reduce the power penalty by 1.76 dB, 2.2 dB and 4 dB compared with 4-PAM, 8-PAM and 16-PAM, respectively. This enhancement is equivalent to 53%, 60% and 71% energy per bit reduction to the transmission of 2, 3 and 4 bits per symbol employing 2-, 3- and 4-channel MMT compared with 4-, 8- and 16-PAM format, respectively. One of the major dependable parameters that affect the immunity of a modulation format to fiber non-linearities, is the system baud rate. The propagation of pulses in fiber with bitrates in the order > 10G, is not only limited by the linear fiber impairments, however, it has strong proportionality with fiber intra-channel non-linearities (Self Phase Modulation (SPM), Intra-channel Cross-Phase Modulation (IXPM) and Intra-channel Four-Wave Mixing (IFWM)). Hence, in addition to the potential application of MMT in short-haul networks, the thesis validates the practicality of implementing N-channel MMT system accompanied by dispersion compensation methodologies to extend the reach of error free transmission (BER ≀ 10-12) for Metro-networks. N-Channel MMT has been validated by real environment simulation results to outperform the performance of M-PAM in tolerating fiber non-linearities. By the employment of pre-post compensation to tolerate both residual chromatic dispersion and non-linearity, performance above the error free transmission limit at 40Gb/s bit rate have been attained for 2-, 3- and 4-channel MMT over spans lengths of up to 1200Km, 320 Km and 320 Km, respectively. While, at an aggregated bit rate of 100 Gb/s, error free transmission can be achieved for 2-, 3- and 4-channel MMT over spans lengths of up to 480 Km, 80 Km and 160 Km, respectively. At the same spectral efficiency, 4-channel MMT has realized a single channel maximum error free transmission over span lengths up to 320 Km and 160 Km at 40Gb/s and 100Gb/s, respectively, in contrast with 4-PAM attaining 240 Km and 80 Km at 40Gb/s and 100Gb/s, respectively

    Bandlimited Power-Efficient Signaling for Intensity Modulation

    No full text
    A new, power-efficient signaling method for intersymbol interference-free transmission over the bandlimited intensity-modulation direct-detection channel is proposed. The method utilizes pulse-amplitude modulation with a sinusoidal bias function and is more power-efficient than previously known methods
    corecore