4 research outputs found

    Analysis and use of the emotional context with wearable devices for games and intelligent assistants

    Get PDF
    In this paper, we consider the use of wearable sensors for providing affect-based adaptation in Ambient Intelligence (AmI) systems. We begin with discussion of selected issues regarding the applications of affective computing techniques. We describe our experiments for affect change detection with a range of wearable devices, such as wristbands and the BITalino platform, and discuss an original software solution, which we developed for this purpose. Furthermore, as a test-bed application for our work, we selected computer games. We discuss the state-of-the-art in affect-based adaptation in games, described in terms of the so-called affective loop. We present our original proposal of a conceptual design framework for games, called the affective game design patterns. As a proof-of-concept realization of this approach, we discuss some original game prototypes, which we have developed, involving emotion-based control and adaptation. Finally, we comment on a software framework, that we have previously developed, for context-aware systems which uses human emotional contexts. This framework provides means for implementing adaptive systems using mobile devices with wearable sensors

    Tourist experiences recommender system based on emotion recognition with wearable data

    Get PDF
    The collection of physiological data from people has been facilitated due to the mass use of cheap wearable devices. Although the accuracy is low compared to specialized healthcare devices, these can be widely applied in other contexts. This study proposes the architecture for a tourist experiences recommender system (TERS) based on the user’s emotional states who wear these devices. The issue lies in detecting emotion from Heart Rate (HR) measurements obtained from these wearables. Unlike most state-of-the-art studies, which have elicited emotions in controlled experiments and with high-accuracy sensors, this research’s challenge consisted of emotion recognition (ER) in the daily life context of users based on the gathering of HR data. Furthermore, an objective was to generate the tourist recommendation considering the emotional state of the device wearer. The method used comprises three main phases: The first was the collection of HR measurements and labeling emotions through mobile applications. The second was emotional detection using deep learning algorithms. The final phase was the design and validation of the TERS-ER. In this way, a dataset of HR measurements labeled with emotions was obtained as results. Among the different algorithms tested for ER, the hybrid model of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks had promising results. Moreover, concerning TERS, Collaborative Filtering (CF) using CNN showed better performance.This research was financially supported by the Ministry of Science, Technology, and Innovation of Colombia (733-2015) and by the Universidad Santo Tomás Seccional Tunja. We thank the members of the GICAC group (Research Group in Administrative and Accounting Sciences) of the Universidad Santo Tomás Seccional Tunja for their participation in the experimental phase of this investigation

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed
    corecore