1,041,423 research outputs found

    Band Structure Engineering of Multinary Chalcogenide Topological Insulators

    Full text link
    Topological insulators (TIs) have been found in strained binary HgTe and ternary I-III-VI2 chalcopyrite compounds such as CuTlSe2 which have inverted band structures. However, the non-trivial band gaps of these existing binary and ternary TIs are limited to small values, usually around 10 meV or less. In this work, we reveal that a large non-trivial band gap requires the material having a large negative crystal field splitting ΔCF\Delta_{CF} at top of the valence band and a moderately large negative sps-p band gap EgspE_g^{s-p}. These parameters can be better tuned through chemical ordering in multinary compounds. Based on this understanding, we show that a series of quaternary I2-II-IV-VI4 compounds, including Cu2HgPbSe4, Cu2CdPbSe4, Ag2HgPbSe4 and Ag2CdPbTe4 are TIs, in which Ag2HgPbSe4 has the largest TI band gap of 47 meV because it combines the optimal values of ΔCF\Delta_{CF} and EgspE_g^{s-p}.Comment: 5 pages, 3 figure

    Band gap engineering of MoS2_2 upon compression

    Get PDF
    Molybdenum disulfide (MoS2_2) is a promising candidate for 2D nanoelectronic devices, that shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS2_2 upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e. ±0.15\pm 0.15). However compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS2_2, show semi-conductor to metal transition upon compressive strain without bucking

    Edge Configurational Effect on Band Gaps in Graphene Nanoribbons

    Full text link
    In this Letter, we put forward a resolution to the prolonged ambiguity in energy band gaps between theory and experiments of fabricated graphene nanoribbons (GNRs). Band structure calculations using density functional theory are performed on oxygen passivated GNRs supercells of customized edge configurations without disturbing the inherent sp2 hybridization of carbon atoms. Direct band gaps are observed for both zigzag and armchair GNRs, consistent with the experimental reports. In addition, band gap values of GNRs scattered about an average value curve for a given crystallographic orientation are correlated with their width on basis of the edge configurations elucidates the band gaps in fabricated GNRs. We conclude that edge configurations of GNRs significantly contribute to band gap formation in addition to its width for a given crystallographic orientation, and would play a crucial role in band gap engineering of GNRs for future research works on fabrication of nanoelectronic devices.Comment: 5 pages, 6 figure

    Band engineering in dilute nitride and bismide semiconductor lasers

    Full text link
    Highly mismatched semiconductor alloys such as GaNAs and GaBiAs have several novel electronic properties, including a rapid reduction in energy gap with increasing x and also, for GaBiAs, a strong increase in spin orbit- splitting energy with increasing Bi composition. We review here the electronic structure of such alloys and their consequences for ideal lasers. We then describe the substantial progress made in the demonstration of actual GaInNAs telecomm lasers. These have characteristics comparable to conventional InP-based devices. This includes a strong Auger contribution to the threshold current. We show, however, that the large spin-orbit-splitting energy in GaBiAs and GaBiNAs could lead to the suppression of the dominant Auger recombination loss mechanism, finally opening the route to efficient temperature-stable telecomm and longer wavelength lasers with significantly reduced power consumption.Comment: 27 pages, 11 figure

    The effect of radio frequency interference on the 136- to 138-MHz return link and 400.5- to 401.5-MHz forward link of the Tracking and Data Relay Satellite System

    Get PDF
    The purpose is to update the RFI estimates in the 136- to 138-MHz VHF band and to make estimates for the first time for the 400.5- to 401.5-MHz UHF band. These preliminary predictions are based on primarily ITU frequency-registration data, with missing data bridged by engineering judgement
    corecore