38 research outputs found

    Balancing Relevance and Diversity in Online Bipartite Matching via Submodularity

    Full text link
    In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance---modeled via total weight---of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (\osbm) problem, where the goal is to maximize a submodular function ff over the set of matched edges. This objective is general enough to capture the notion of both diversity (\emph{e.g.,} a weighted coverage function) and relevance (\emph{e.g.,} the traditional linear function)---as well as many other natural objective functions occurring in practice (\emph{e.g.,} limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.Comment: To appear in AAAI 201

    Ranking with Slot Constraints

    Full text link
    We introduce the problem of ranking with slot constraints, which can be used to model a wide range of application problems -- from college admission with limited slots for different majors, to composing a stratified cohort of eligible participants in a medical trial. We show that the conventional Probability Ranking Principle (PRP) can be highly sub-optimal for slot-constrained ranking problems, and we devise a new ranking algorithm, called MatchRank. The goal of MatchRank is to produce rankings that maximize the number of filled slots if candidates are evaluated by a human decision maker in the order of the ranking. In this way, MatchRank generalizes the PRP, and it subsumes the PRP as a special case when there are no slot constraints. Our theoretical analysis shows that MatchRank has a strong approximation guarantee without any independence assumptions between slots or candidates. Furthermore, we show how MatchRank can be implemented efficiently. Beyond the theoretical guarantees, empirical evaluations show that MatchRank can provide substantial improvements over a range of synthetic and real-world tasks

    Online Algorithms for Matchings with Proportional Fairness Constraints and Diversity Constraints

    Full text link
    Matching problems with group-fairness constraints and diversity constraints have numerous applications such as in allocation problems, committee selection, school choice, etc. Moreover, online matching problems have lots of applications in ad allocations and other e-commerce problems like product recommendation in digital marketing. We study two problems involving assigning {\em items} to {\em platforms}, where items belong to various {\em groups} depending on their attributes; the set of items are available offline and the platforms arrive online. In the first problem, we study online matchings with {\em proportional fairness constraints}. Here, each platform on arrival should either be assigned a set of items in which the fraction of items from each group is within specified bounds or be assigned no items; the goal is to assign items to platforms in order to maximize the number of items assigned to platforms. In the second problem, we study online matchings with {\em diversity constraints}, i.e. for each platform, absolute lower bounds are specified for each group. Each platform on arrival should either be assigned a set of items that satisfy these bounds or be assigned no items; the goal is to maximize the set of platforms that get matched. We study approximation algorithms and hardness results for these problems. The technical core of our proofs is a new connection between these problems and the problem of matchings in hypergraphs. Our experimental evaluation shows the performance of our algorithms on real-world and synthetic datasets exceeds our theoretical guarantees.Comment: 16 pages, Full version of a paper accepted in ECAI 202

    Two-Sided Capacitated Submodular Maximization in Gig Platforms

    Full text link
    In this paper, we propose three generic models of capacitated coverage and, more generally, submodular maximization to study task-worker assignment problems that arise in a wide range of gig economy platforms. Our models incorporate the following features: (1) Each task and worker can have an arbitrary matching capacity, which captures the limited number of copies or finite budget for the task and the working capacity of the worker; (2) Each task is associated with a coverage or, more generally, a monotone submodular utility function. Our objective is to design an allocation policy that maximizes the sum of all tasks' utilities, subject to capacity constraints on tasks and workers. We consider two settings: offline, where all tasks and workers are static, and online, where tasks are static while workers arrive dynamically. We present three LP-based rounding algorithms that achieve optimal approximation ratios of 1βˆ’1/e∼0.6321-1/\mathsf{e} \sim 0.632 for offline coverage maximization, competitive ratios of (19βˆ’67/e3)/27∼0.580(19-67/\mathsf{e}^3)/27\sim 0.580 and 0.4360.436 for online coverage and online monotone submodular maximization, respectively.Comment: This paper was accepted to the 19th Conference on Web and Internet Economics (WINE), 202

    A Bilevel Formalism for the Peer-Reviewing Problem

    Full text link
    Due to the large number of submissions that more and more conferences experience, finding an automatized way to well distribute the submitted papers among reviewers has become necessary. We model the peer-reviewing matching problem as a {\it bilevel programming (BP)} formulation. Our model consists of a lower-level problem describing the reviewers' perspective and an upper-level problem describing the editors'. Every reviewer is interested in minimizing their overall effort, while the editors are interested in finding an allocation that maximizes the quality of the reviews and follows the reviewers' preferences the most. To the best of our knowledge, the proposed model is the first one that formulates the peer-reviewing matching problem by considering two objective functions, one to describe the reviewers' viewpoint and the other to describe the editors' viewpoint. We demonstrate that both the upper-level and lower-level problems are feasible and that our BP model admits a solution under mild assumptions. After studying the properties of the solutions, we propose a heuristic to solve our model and compare its performance with the relevant state-of-the-art methods. Extensive numerical results show that our approach can find fairer solutions with competitive quality and less effort from the reviewers.Comment: 14 pages, 7 figure

    Online Dependent Rounding Schemes

    Full text link
    We study the abstract problem of rounding fractional bipartite bb-matchings online. The input to the problem is an unknown fractional bipartite bb-matching, exposed node-by-node on one side. The objective is to maximize the \emph{rounding ratio} of the output matching M\mathcal{M}, which is the minimum over all fractional bb-matchings x\mathbf{x}, and edges ee, of the ratio Pr⁑[e∈M]/xe\Pr[e\in \mathcal{M}]/x_e. In offline settings, many dependent rounding schemes achieving a ratio of one and strong negative correlation properties are known (e.g., Gandhi et al., J.ACM'06 and Chekuri et al., FOCS'10), and have found numerous applications. Motivated by online applications, we present \emph{online dependent-rounding schemes} (ODRSes) for bb-matching. For the special case of uniform matroids (single offline node), we present a simple online algorithm with a rounding ratio of one. Interestingly, we show that our algorithm yields \emph{the same distribution} as its classic offline counterpart, pivotal sampling (Srinivasan, FOCS'01), and so inherits the latter's strong correlation properties. In arbitrary bipartite graphs, an online rounding ratio of one is impossible, and we show that a combination of our uniform matroid ODRS with repeated invocations of \emph{offline} contention resolution schemes (CRSes) yields a rounding ratio of 1βˆ’1/eβ‰ˆ0.6321-1/e\approx 0.632. Our main technical contribution is an ODRS breaking this pervasive bound, yielding rounding ratios of 0.6460.646 and 0.6520.652 for bb-matchings and simple matchings, respectively. We obtain these results by grouping nodes and using CRSes for negatively-correlated distributions, together with a new method we call \emph{group discount and individual markup}, analyzed using the theory of negative association. We present a number of applications of our ODRSes to online edge coloring, several stochastic optimization problems, and algorithmic fairness

    Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees

    Full text link
    Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any ρ∈[0,1]\rho\in[0,1], LOMAR is ρ\rho-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines. Our code is available at: https://github.com/Ren-Research/LOMARComment: Accepted by ICML 202
    corecore