7 research outputs found

    PTAS for Sparse General-Valued CSPs

    Full text link
    We study polynomial-time approximation schemes (PTASes) for constraint satisfaction problems (CSPs) such as Maximum Independent Set or Minimum Vertex Cover on sparse graph classes. Baker's approach gives a PTAS on planar graphs, excluded-minor classes, and beyond. For Max-CSPs, and even more generally, maximisation finite-valued CSPs (where constraints are arbitrary non-negative functions), Romero, Wrochna, and \v{Z}ivn\'y [SODA'21] showed that the Sherali-Adams LP relaxation gives a simple PTAS for all fractionally-treewidth-fragile classes, which is the most general "sparsity" condition for which a PTAS is known. We extend these results to general-valued CSPs, which include "crisp" (or "strict") constraints that have to be satisfied by every feasible assignment. The only condition on the crisp constraints is that their domain contains an element which is at least as feasible as all the others (but possibly less valuable). For minimisation general-valued CSPs with crisp constraints, we present a PTAS for all Baker graph classes -- a definition by Dvo\v{r}\'ak [SODA'20] which encompasses all classes where Baker's technique is known to work, except possibly for fractionally-treewidth-fragile classes. While this is standard for problems satisfying a certain monotonicity condition on crisp constraints, we show this can be relaxed to diagonalisability -- a property of relational structures connected to logics, statistical physics, and random CSPs

    Fully dynamic approximation schemes on planar and apex-minor-free graphs

    Full text link
    The classic technique of Baker [J. ACM '94] is the most fundamental approach for designing approximation schemes on planar, or more generally topologically-constrained graphs, and it has been applied in a myriad of different variants and settings throughout the last 30 years. In this work we propose a dynamic variant of Baker's technique, where instead of finding an approximate solution in a given static graph, the task is to design a data structure for maintaining an approximate solution in a fully dynamic graph, that is, a graph that is changing over time by edge deletions and edge insertions. Specifically, we address the two most basic problems -- Maximum Weight Independent Set and Minimum Weight Dominating Set -- and we prove the following: for a fully dynamic nn-vertex planar graph GG, one can: * maintain a (1ε)(1-\varepsilon)-approximation of the maximum weight of an independent set in GG with amortized update time f(ε)no(1)f(\varepsilon)\cdot n^{o(1)}; and, * under the additional assumption that the maximum degree of the graph is bounded at all times by a constant, also maintain a (1+ε)(1+\varepsilon)-approximation of the minimum weight of a dominating set in GG with amortized update time f(ε)no(1)f(\varepsilon)\cdot n^{o(1)}. In both cases, f(ε)f(\varepsilon) is doubly-exponential in poly(1/ε)\mathrm{poly}(1/\varepsilon) and the data structure can be initialized in time f(ε)n1+o(1)f(\varepsilon)\cdot n^{1+o(1)}. All our results in fact hold in the larger generality of any graph class that excludes a fixed apex-graph as a minor.Comment: 37 pages, accepted to SODA '2

    Pliability and approximating max-CSPs

    Get PDF
    We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time algorithm for an arbitrarily good approximation of the optimal value in a large class of Max-2-CSPs parameterised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing a polynomial-time approximation scheme. One is Baker’s layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer´edi’s regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. On the other hand, we prove that the condition cannot be used to find solutions (as opposed to approximating the optimal value) in general. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionallytreewidth-fragile and has bounded degree

    Hitting Subgraphs in Sparse Graphs and Geometric Intersection Graphs

    Full text link
    We investigate a fundamental vertex-deletion problem called (Induced) Subgraph Hitting: given a graph GG and a set F\mathcal{F} of forbidden graphs, the goal is to compute a minimum-sized set SS of vertices of GG such that GSG-S does not contain any graph in F\mathcal{F} as an (induced) subgraph. This is a generic problem that encompasses many well-known problems that were extensively studied on their own, particularly (but not only) from the perspectives of both approximation and parameterization. We focus on the design of efficient approximation schemes, i.e., with running time f(ε,F)nO(1)f(\varepsilon,\mathcal{F}) \cdot n^{O(1)}, which are also of significant interest to both communities. Technically, our main contribution is a linear-time approximation-preserving reduction from (Induced) Subgraph Hitting on any graph class G\mathcal{G} of bounded expansion to the same problem on bounded degree graphs within G\mathcal{G}. This yields a novel algorithmic technique to design (efficient) approximation schemes for the problem on very broad graph classes, well beyond the state-of-the-art. Specifically, applying this reduction, we derive approximation schemes with (almost) linear running time for the problem on any graph classes that have strongly sublinear separators and many important classes of geometric intersection graphs (such as fat-object graphs, pseudo-disk graphs, etc.). Our proofs introduce novel concepts and combinatorial observations that may be of independent interest (and, which we believe, will find other uses) for studies of approximation algorithms, parameterized complexity, sparse graph classes, and geometric intersection graphs. As a byproduct, we also obtain the first robust algorithm for kk-Subgraph Isomorphism on intersection graphs of fat objects and pseudo-disks, with running time f(k)nlogn+O(m)f(k) \cdot n \log n + O(m).Comment: 60 pages, abstract shortened to fulfill the length limi

    Treewidth-Pliability and PTAS for Max-CSPs

    Get PDF
    We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time approximation scheme (PTAS) for a large class of Max-2-CSPs parametrised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing PTASes. One is Baker's layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer\'{e}di's regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionally-treewidth-fragile and has bounded degree
    corecore