2,696 research outputs found

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Unsupervised Learning from Narrated Instruction Videos

    Full text link
    We address the problem of automatically learning the main steps to complete a certain task, such as changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold. First, we develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method solves two clustering problems, one in text and one in video, applied one after each other and linked by joint constraints to obtain a single coherent sequence of steps in both modalities. Second, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains about 800,000 frames for five different tasks that include complex interactions between people and objects, and are captured in a variety of indoor and outdoor settings. Third, we experimentally demonstrate that the proposed method can automatically discover, in an unsupervised manner, the main steps to achieve the task and locate the steps in the input videos.Comment: Appears in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). 21 page

    Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text

    Get PDF
    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations

    Learning and Interpreting Multi-Multi-Instance Learning Networks

    Get PDF
    We introduce an extension of the multi-instance learning problem where examples are organized as nested bags of instances (e.g., a document could be represented as a bag of sentences, which in turn are bags of words). This framework can be useful in various scenarios, such as text and image classification, but also supervised learning over graphs. As a further advantage, multi-multi instance learning enables a particular way of interpreting predictions and the decision function. Our approach is based on a special neural network layer, called bag-layer, whose units aggregate bags of inputs of arbitrary size. We prove theoretically that the associated class of functions contains all Boolean functions over sets of sets of instances and we provide empirical evidence that functions of this kind can be actually learned on semi-synthetic datasets. We finally present experiments on text classification, on citation graphs, and social graph data, which show that our model obtains competitive results with respect to accuracy when compared to other approaches such as convolutional networks on graphs, while at the same time it supports a general approach to interpret the learnt model, as well as explain individual predictions.Comment: JML

    SEGMENTATION, RECOGNITION, AND ALIGNMENT OF COLLABORATIVE GROUP MOTION

    Get PDF
    Modeling and recognition of human motion in videos has broad applications in behavioral biometrics, content-based visual data analysis, security and surveillance, as well as designing interactive environments. Significant progress has been made in the past two decades by way of new models, methods, and implementations. In this dissertation, we focus our attention on a relatively less investigated sub-area called collaborative group motion analysis. Collaborative group motions are those that typically involve multiple objects, wherein the motion patterns of individual objects may vary significantly in both space and time, but the collective motion pattern of the ensemble allows characterization in terms of geometry and statistics. Therefore, the motions or activities of an individual object constitute local information. A framework to synthesize all local information into a holistic view, and to explicitly characterize interactions among objects, involves large scale global reasoning, and is of significant complexity. In this dissertation, we first review relevant previous contributions on human motion/activity modeling and recognition, and then propose several approaches to answer a sequence of traditional vision questions including 1) which of the motion elements among all are the ones relevant to a group motion pattern of interest (Segmentation); 2) what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are similar and how we can 'optimally' transform one to match the other (Alignment). Our primary practical scenario is American football play, where the corresponding problems are 1) who are offensive players; 2) what are the offensive strategy they are using; and 3) whether two plays are using the same strategy and how we can remove the spatio-temporal misalignment between them due to internal or external factors. The proposed approaches discard traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic mechanism, or compact generative model to achieve both effectiveness and efficiency. In particular, the intrinsic geometry of the spaces of the involved features/descriptors/quantities is exploited and statistical tools are established on these nonlinear manifolds. These initial attempts have identified new challenging problems in complex motion analysis, as well as in more general tasks in video dynamics. The insights gained from nonlinear geometric modeling and analysis in this dissertation may hopefully be useful toward a broader class of computer vision applications

    An in-depth evaluation of multimodal video genre categorization

    Get PDF
    International audienceIn this paper we propose an in-depth evaluation of the performance of video descriptors to multimodal video genre categorization. We discuss the perspective of designing appropriate late fusion techniques that would enable to attain very high categorization accuracy, close to the one achieved with user-based text information. Evaluation is carried out in the context of the 2012 Video Genre Tagging Task of the MediaEval Benchmarking Initiative for Multimedia Evaluation, using a data set of up to 15.000 videos (3,200 hours of footage) and 26 video genre categories specific to web media. Results show that the proposed approach significantly improves genre categorization performance, outperforming other existing approaches. The main contribution of this paper is in the experimental part, several valuable interesting findings are reported that motivate further research on video genre classification

    Characterising Players of a Cube Puzzle Game with a Two-level Bag of Words

    Get PDF
    Ponencia presentada en UMAP '21: Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, Utrecht (Netherlands), June 21 - 25, 2021This work explores an unsupervised approach for modelling players of a 2D cube puzzle game with the ultimate goal of customising the game for particular players based solely on their interaction data. To that end, user interactions when solving puzzles are coded as images. Then, a feature embedding is learned for each puzzle with a convolutional network trained to regress the players’ comple tion effort in terms of time and number of clicks. Next, the known bag-of-words technique is used at two levels. First, sets of puzzles are represented using the puzzle feature embeddings as the input space. Second, the resulting first-level histograms are used as input space for characterising players. As a result, new players can be characterised in terms of the resulting second-level histograms. Preliminary results indicate that the approach is effective for char acterising players in terms of performance. It is also tentatively observed that other personal perceptions and preferences, beyond performance, are somehow implicitly captured from behavioural data
    • …
    corecore