93,043 research outputs found

    Backward Linear Control Systems on Time Scales

    Full text link
    We show how a linear control systems theory for the backward nabla differential operator on an arbitrary time scale can be obtained via Caputo's duality. More precisely, we consider linear control systems with outputs defined with respect to the backward jump operator. Kalman criteria of controllability and observability, as well as realizability conditions, are proved.Comment: Submitted November 11, 2009; Revised March 28, 2010; Accepted April 03, 2010; for publication in the International Journal of Control

    Backward Reachability Analysis of Perturbed Continuous-Time Linear Systems Using Set Propagation

    Full text link
    Backward reachability analysis computes the set of states that reach a target set under the competing influence of control input and disturbances. Depending on their interplay, the backward reachable set either represents all states that can be steered into the target set or all states that cannot avoid entering it -- the corresponding solutions can be used for controller synthesis and safety verification, respectively. A popular technique for backward reachable set computation solves Hamilton-Jacobi-Isaacs equations, which scales exponentially with the state dimension due to gridding the state space. In this work, we instead use set propagation techniques to design backward reachability algorithms for linear time-invariant systems. Crucially, the proposed algorithms scale only polynomially with the state dimension. Our numerical examples demonstrate the tightness of the obtained backward reachable sets and show an overwhelming improvement of our proposed algorithms over state-of-the-art methods regarding scalability, as systems with well over a hundred states can now be analyzed.Comment: 16 page

    Chaotic synchronization of coupled electron-wave systems with backward waves

    Full text link
    The chaotic synchronization of two electron-wave media with interacting backward waves and cubic phase nonlinearity is investigated in the paper. To detect the chaotic synchronization regime we use a new approach, the so-called time scale synchronization [Chaos, 14 (3) 603-610 (2004)]. This approach is based on the consideration of the infinite set of chaotic signals' phases introduced by means of continuous wavelet transform. The complex space-time dynamics of the active media and mechanisms of the time scale synchronization appearance are considered.Comment: 11 pages, 7 figures, published in CHAOS, 15 (2005) 01370

    Singularly perturbed forward-backward stochastic differential equations: application to the optimal control of bilinear systems

    Get PDF
    We study linear-quadratic stochastic optimal control problems with bilinear state dependence for which the underlying stochastic differential equation (SDE) consists of slow and fast degrees of freedom. We show that, in the same way in which the underlying dynamics can be well approximated by a reduced order effective dynamics in the time scale limit (using classical homogenziation results), the associated optimal expected cost converges in the time scale limit to an effective optimal cost. This entails that we can well approximate the stochastic optimal control for the whole system by the reduced order stochastic optimal control, which is clearly easier to solve because of lower dimensionality. The approach uses an equivalent formulation of the Hamilton-Jacobi-Bellman (HJB) equation, in terms of forward-backward SDEs (FBSDEs). We exploit the efficient solvability of FBSDEs via a least squares Monte Carlo algorithm and show its applicability by a suitable numerical example

    Optimal control of multiscale systems using reduced-order models

    Get PDF
    We study optimal control of diffusions with slow and fast variables and address a question raised by practitioners: is it possible to first eliminate the fast variables before solving the optimal control problem and then use the optimal control computed from the reduced-order model to control the original, high-dimensional system? The strategy "first reduce, then optimize"--rather than "first optimize, then reduce"--is motivated by the fact that solving optimal control problems for high-dimensional multiscale systems is numerically challenging and often computationally prohibitive. We state sufficient and necessary conditions, under which the "first reduce, then control" strategy can be employed and discuss when it should be avoided. We further give numerical examples that illustrate the "first reduce, then optmize" approach and discuss possible pitfalls

    Backward variational approach on time scales with an action depending on the free endpoints

    Full text link
    We establish necessary optimality conditions for variational problems with an action depending on the free endpoints. New transversality conditions are also obtained. The results are formulated and proved using the recent and general theory of time scales via the backward nabla differential operator.Comment: Submitted 17-Oct-2010; revised 18-Dec-2010; accepted 4-Jan-2011; for publication in Zeitschrift fuer Naturforschung

    A General Backwards Calculus of Variations via Duality

    Full text link
    We prove Euler-Lagrange and natural boundary necessary optimality conditions for problems of the calculus of variations which are given by a composition of nabla integrals on an arbitrary time scale. As an application, we get optimality conditions for the product and the quotient of nabla variational functionals.Comment: Submitted to Optimization Letters 03-June-2010; revised 01-July-2010; accepted for publication 08-July-201

    Variational Optimal-Control Problems with Delayed Arguments on Time Scales

    Get PDF
    This article deals with variational optimal-control problems on time scales in the presence of delay in the state variables. The problem is considered on a time scale unifying the discrete, the continuous and the quantum cases. Two examples in the discrete and quantum cases are analyzed to illustrate our results.Comment: To apear in Advances in Difference Equation

    Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach

    Full text link
    We introduce a real-time, constrained, nonlinear Model Predictive Control for the motion planning of legged robots. The proposed approach uses a constrained optimal control algorithm known as SLQ. We improve the efficiency of this algorithm by introducing a multi-processing scheme for estimating value function in its backward pass. This pass has been often calculated as a single process. This parallel SLQ algorithm can optimize longer time horizons without proportional increase in its computation time. Thus, our MPC algorithm can generate optimized trajectories for the next few phases of the motion within only a few milliseconds. This outperforms the state of the art by at least one order of magnitude. The performance of the approach is validated on a quadruped robot for generating dynamic gaits such as trotting.Comment: 8 page
    • …
    corecore