5 research outputs found

    Control of systems modeled by hyperbolic partial diferential equations

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2017.Sistemas com parâmetros distribuídos representam uma vasta gama de processos da engenharia. Neste caso, as variáveis do sistema irão conter termos dependentes do tempo assim como gradientes espaciais e, portanto, é natural representa-los por equações diferenciais parciais. Exemplos podem ser encontrados em diversas áreas: desde processos químicos e térmicos, sistemas de produção e distribuição de energia, e problemas relacionados ao transporte de fluidos e ciência médica. Esta tese trata dois tipos de problemas: estabilização de equações diferenciais parciais lineares hiperbólicas com variável de controle na condição de contorno e controle regulatório de sistemas descritos por equações diferenciais parciais quasi-lineares hiperbólicas com variável de controle no domínio. Com relação ao primeiro, estudaram-se duas metodologias de controle: (i) uma lei de controle estática que garante convergência do sistema para o ponto de equilíbrio desejado. A metodologia de controle utiliza uma função de Lyapunov para encontrar os valores dos parâmetros do controlador que garantem estabilidade exponencial em malha fechada. Resultados de simulação para o problema de supressão de golfadas em sistemas de produção de petróleo são apresentados para ilustrar a eficiência do método; (ii) uma lei de controle baseada nas ferramentas clássicas do domínio da frequência. Neste caso, aplicamos a transformada de Laplace na equação diferencial parcial para obter uma função de transferência irracional e então, ferramentas clássicas do domínio da frequência são usadas para projetar o controlador, de maneira similar aos sistemas de dimensão finita com função de transferência racional. Estes resultados foram aplicados experimentalmente no problema de controle de oscilações termoacústicas do tubo de Rijke, mostrando a efetividade do método. Para o segundo problema, utiliza-se o método das características combinado com a técnica de controle por modos deslizantes. O método das características é usado para transformar o sistema de equações diferenciais parciais em um conjunto de equações diferenciais ordinárias que descrevem o sistema original. O projeto de controle é então realizado a partir deste conjunto de equações diferenciais ordinárias através de resultados bem conhecidos da teoria de equações diferenciais ordinárias. Os resultados obtidos foram testados experimentalmente em dois sistemas de escala industrial: uma planta solar e um fotobiorreator tubular.Abstract : Distributed parameter systems represent a wide range of engineeringprocesses. In this case, the system variables will contain temporally dependentterms as well spatial gradients and, therefore, it is natural to representthem by partial dierential equations. Examples can be found in manyelds: chemical and thermal processes, production and distribution energysystems, and problems related to uid transport and medical science.This thesis deals with two dierent problems: stabilization of linear hyperbolicpartial dierential equations with boundary control and regulatorycontrol of systems described by quasilinear hyperbolic partial dierentialequations with in domain control. Concerning the boundary control problem,we studied two control methodologies: (i) a static control law thatguarantees convergence of the system to the desired equilibrium point. Thiscontrol methodology uses a Lyapunov function to nd the values of thecontrol parameters that guarantee closed-loop exponential stability. Simulationresults for the slugging control problem in oil production facilities arepresented to illustrate the eciency of the methodology; (ii) a control lawbased on the frequency domain tools. In this case, we applied the Laplacetransform on the partial dierential equation to obtain an irrational transferfunction and then classical frequency domain tools are used to designthe control law. These results were applied experimentally to the controlproblem of thermoacoustic oscillations in the Rijke tube, showing the effectivenessof the method. Regarding the regulatory control problem, weuse the method of characteristics together with the sliding mode controlmethodology. The method of characteristics is used to transform the partialdierential equations into a system of ordinary dierential equations thatdescribes the original system without any kind of approximation. Then,the control design is performed on the ordinary dierential equations withwell-known results of the theory of lumped parameter systems. The resultswere validated experimentally in two industrial scale systems: a solar powerplant and a tubular photobioreactor

    Adaptive Backstepping Stabilization of Thermoacoustic Instability in a Linearized ODE-PDE Rijke Tube Model

    No full text
    This paper proposes an adaptive scheme for the boundary stabilization of thermoacoustic instability in the Rijke tube system using the backstepping method. The mathematical model of the system is characterized by a 2×22\times 2 linear hyperbolic partial differential equation (PDE) coupled with a first-order ordinary differential equation (ODE) in a non-strict-feedback form. Recently, a full state feedback controller has been developed to stabilize the system, assuming that the parameters of the model are known. We take into account the most common uncertain parameters which result in the coefficients of the first-order ODE system being unknown parameters. The technique of adaptive identifier is then used along with the normalized gradient algorithm to achieve the parameter update laws. The adaptive control law is obtained by replacing the output of the identifier and estimated parameters in the non-adaptive state feedback control law. The adaptive control law is then manipulated such that it uses a few measurements of the PDE states. According to the stability analysis of the system, the proposed controller guarantees that all closed-loop system states are bounded, while the ODE-PDE system states are convergent to zero. Performance of the proposed scheme is evaluated by the simulation examples
    corecore