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GUSTAVO ARTUR DE ANDRADE

Control of Systems Modeled by Hyperbolic Partial Differential
Equations

Florianópolis
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RESUMO

Control of Systems Modeled by Hyperbolic Partial Differential
Equations

GUSTAVO ARTUR DE ANDRADE
Fevereiro/2017

Orientador: Prof. Daniel Juan Pagano, Dr.
Área de concentração: Controle, Automação e Sistemas

Sistemas com parâmetros distribúıdos representam uma vasta gama de
processos da engenharia. Neste caso, as variÃ ↪aveis do sistema irão conter
termos dependentes do tempo assim como gradientes espaciais e, portanto,
é natural representá-los por equações diferenciais parciais. Exemplos podem
ser encontrados em diversas áreas: desde processos qúımicos e térmicos,
sistemas de produção e distribuição de energia, e problemas relacionados
ao transporte de fluidos e ciência médica.

Esta tese trata dois tipos de problemas: estabilização de equações dife-
renciais parciais hiperbólicas lineares com variável de controle na condição
de contorno e controle regulatório de sistemas descritos por equações di-
ferenciais parciais hiperbólicas quasilineares com variável de controle no
domı́nio. Com relação ao primeiro, estudaram-se duas metodologias de con-
trole: (i) uma lei de controle estática que garante convergência do sistema
para o ponto de equiĺıbrio desejado. A metodologia de controle utiliza uma
função de Lyapunov para encontrar os valores dos parâmetros do controla-
dor que garantem estabilidade exponencial em malha fechada. Resultados
de simulação para o problema de supressão de golfadas em sistemas de
produção de petróleo são apresentados para ilustrar a eficiência do mé-
todo; (ii) uma lei de controle baseada nas ferramentas clássicas do domı́nio
da frequência. Neste caso, aplicamos a transformada de Laplace à equa-
ção diferencial parcial para obter uma função de transferência irracional
e então, ferramentas clássicas do domı́nio da frequência são usadas para
projetar o controlador, de maneira similar aos sistemas de dimensão finita
com função de transferência racional. Estes resultados foram aplicados
experimentalmente no problema de controle de oscilações termoacústicas
do tubo de Rijke, mostrando a efetividade do método. Para o segundo pro-
blema, utiliza-se o método das caracteŕısticas combinado com a técnica de
controle por modos deslizantes. O método das caracteŕısticas é usado para



transformar o sistema de equações diferenciais parciais em um conjunto
de equações diferenciais ordinárias que descrevem o sistema original. O
projeto de controle é então realizado a partir deste conjunto de equações
diferenciais ordinárias através de resultados bem conhecidos da teoria de
equações diferenciais ordinárias. Os resultados obtidos foram testados ex-
perimentalmente em dois sistemas de escala industrial: uma planta solar e
um fotobiorreator tubular.

Palavras-chaves: controle de processos; controle por modos deslizantes; do-
mı́nio da frequência; equações diferenciais parciais; estabilização; função
de transferência irracional; método das caracteŕısticas.



ABSTRACT

Control of Systems Modeled by Hyperbolic Partial Differential
Equations

GUSTAVO ARTUR DE ANDRADE
February/2017

Supervisor: Prof. Daniel Juan Pagano, Dr.
Concentration area: Control, Automation and systems

Distributed parameter systems represent a wide range of engineering
processes. In this case, the system variables will contain temporally depen-
dent terms as well spatial gradients and, therefore, it is natural to represent
them by partial differential equations. Examples can be found in many
fields: chemical and thermal processes, production and distribution energy
systems, and problems related to fluid transport and medical science.

This thesis deals with two different problems: stabilization of linear hy-
perbolic partial differential equations with boundary control and regulatory
control of systems described by quasilinear hyperbolic partial differential
equations with in domain control. Concerning the boundary control prob-
lem, we studied two control methodologies: (i) a static control law that
guarantees convergence of the system to the desired equilibrium point. This
control methodology uses a Lyapunov function to find the values of the
control parameters that guarantee closed-loop exponential stability. Simula-
tion results for the slugging control problem in oil production facilities are
presented to illustrate the efficiency of the methodology; (ii) a control law
based on the frequency domain tools. In this case, we applied the Laplace
transform on the partial differential equation to obtain an irrational trans-
fer function and then classical frequency domain tools are used to design
the control law. These results were applied experimentally to the control
problem of thermoacoustic oscillations in the Rijke tube, showing the ef-
fectiveness of the method. Regarding the regulatory control problem, we
use the method of characteristics together with the sliding mode control
methodology. The method of characteristics is used to transform the partial
differential equations into a system of ordinary differential equations that
describes the original system without any kind of approximation. Then,
the control design is performed on the ordinary differential equations with
well-known results of the theory of lumped parameter systems. The results



were validated experimentally in two industrial scale systems: a solar power
plant and a tubular photobioreactor.

Keywords: process control; sliding mode control; frequency domain; partial
differential equations; irrational transfer function; stabilization; method of
characteristics.
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Sets
R set of real numbers
C set of complex numbers

C+ set of all complex numbers with real part larger than or
equal zero

Mm,n(R) set of m× n real matrices
Dn set of n× n diagonal real matrices with strictly positive

diagonal

Function spaces and norms

By Ck we denote the class of k times continuously differentiable func-
tions.

Consider a function f : (0, 1)→ R and define, for p ∈ [1, ∞)

‖f‖L p(0,1) =

(∫ 1

0

|f(x)|p
) 1
p

dx.

Then, for p ∈ [1, ∞), the L p((0, 1);R) space is defined as

L p((0, 1);R) = {f : ‖f‖L p(0,1) <∞}.

For p =∞, we define

L∞((0, 1);R) = {f : ‖f‖L∞(0,1) = sup
x∈(0, 1)

|f(x)| <∞}.

Define

‖f‖H 2(0,1) =

(∫ 1

0

|f(x)|2dx+

∫ 1

0

| df
dx
|2dx+

∫ 1

0

|d
2f

dx2
|2dx

) 1
2

.

Then the Sobolev space H 2((0, 1);R) is defined as

H 2((0, 1);R) = {f : ‖f‖H 2(0,1) <∞}.
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‖G(s)‖
H(C+) = sup

Re(s)>0

|G(s)|.

By H∞(C+;C) we denote the following Hardy space:

H∞(C+;C) = {G : ‖G‖
H(C+) <∞}



Chapter 1

Introduction

1.1 Motivation and state of the art

In the last decades, the development of control techniques for linear and
nonlinear systems with distributed parameter systems based on partial
differential equations (PDEs) has received great attention from the scientific
community [1, 2]. These control methodologies exploit the properties of
the PDE system to ensure the control problem specifications. Applications
of this research area can be found in many fields: chemical and thermal
processes, distribution and energy production systems, and systems related
with fluid transport and medical science [3].

Based on the location of the actuators and sensors, the control method-
ologies for distributed parameter systems can be divided into (i) in domain
control and (ii) boundary control. In the first case, the actuation and sens-
ing are inside the domain of the PDE system or are evenly distributed
everywhere in the domain. From a practical point of view, this means that
the sensing and actuation are intrusive. In the second case, the sensing
and actuation are not intrusive. Thus, in the mathematical formulation we
have the actuation and sensing variables in the boundary condition of the
PDE system. The boundary control is considered more realistic due to the
fact that actuation and measurement are not intrusive in practice [4].

Several control methodologies for boundary control and in domain con-
trol can be found in the literature. Motivated by several industrial processes,
boundary control methodologies are most focused on stabilization. In [2,
5] the stabilization of linear PDEs is investigated through a frequency do-
main approach, whereas [6] focuses on the disturbance rejection problem
for system modeled by linear first-order hyperbolic PDEs. In [7], a static
control law based on a Lyapunov function is introduced for the particular
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case of 2 × 2 linear hyperbolic PDEs without in domain coupling. In [8],
this result was extended to n× n linear hyperbolic PDEs weakly coupled
in domain. The case of first-order nonlinear hyperbolic PDEs was treated
in [9]. Other extensions and applications of this control methodology can
be seen in [10–12]. The backstepping method is another promising control
methodology for boundary control stabilization problem in PDEs [4]. The
main idea is to construct an invertible coordinate transformation (Volterra
integral transform) and a control law in order to target the system to the
desired closed-loop form. The closed-loop desired form is called target sys-
tem. The choice of the target system is different for each class of PDEs.
This requires that the control designer has a reasonable knowledge about
the stability properties of the different classes of PDEs. Some results of
this control methodology for hyperbolic PDEs can be seen in [1], and for
parabolic PDEs in [13, 14].

Regarding in domain control methodologies, in [15, 16] a feedback lin-
earization control strategy for regulation and disturbance rejection problem
was developed for linear and quasilinear hyperbolic PDEs. Other contribu-
tions for hyperbolic PDEs range from optimal control methods (e.g. [17–19])
and Lyapunov based methods [20]. The case of regulation and disturbance
rejection through sliding mode control is studied in [21–24]. This method is
based on the combination of the method of characteristics and the classical
concepts of sliding mode control for lumped parameter systems. Methods
based on spectral decomposition techniques can be seen in [25, 26]. This
approach takes advantage of the spatial differential operator structure and
used the Galerkin method to approximate the system by a low-dimensional
set of ODEs and to design the controller [27].

Although the research of control methodologies for distributed parame-
ter systems based on the theory of PDEs has become increasingly active,
many problems associated with general technical methodology, computa-
tional tractability and experimental applications in industrial systems re-
main open. Probably, these problems are related with the mathematical
challenges of PDEs. Even simple problems such as heat equations and wave
equations require the user to have a considerable background in PDEs and
functional analysis before one can study the control design methods for
these systems [4]. In this context, further research into the control of PDEs
is necessary to yield results for a broader class of models.

In this thesis we will study the control problem of systems represented by
quasilinear and linear first-order hyperbolic PDEs and applications, mainly
taking into account the problems mentioned in the former paragraph..
These PDEs are used to represent a wide range of systems encountered in
engineering processes. The focus of the study is on the nominal model of
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the system and parametric uncertainties are not considered.

1.2 Problem definition

In this thesis we consider two distinct and disjoint control problems:

i. The boundary stabilization problem of 1-D linear hyperbolic PDEs. In
this case, these PDEs have the following expression:

∂υ

∂t
(x, t) + Λ

∂υ

∂x
(x, t) + Mυ(x, t) = 0, (1.1)

where t ∈ [0, +∞) is the time variable, x ∈ [0, L] is the space variable,
υ : [0, +∞) × [0, L] → Rn is the vector of state variables, Λ and M
are n× n real matrices.

The initial condition of (1.1) is

υ(x, 0) = υ0(x), x ∈ [0, L], (1.2)

and the boundary conditions are

gi,0(υ(0, t), u0(t), Ci,0X(t)) = 0, t ∈ [0,+∞), (1.3)

gi,L(υ(L, t), uL(t), Ci,LX(t)) = 0, t ∈ [0,+∞), (1.4)

i = 1, . . . , n,

where gi,0, gi,L : Rn+2 → R, u0, uL : [0,+∞) → R are the control
variables, Ci,0 = (ci1,0 . . . cip,0) and Ci,L = (ci1,L . . . cip,L) are
row vectors with real entries and

dX

dt
(t) = f(X(t),υ(L, t),υ(0, t)),

with X ∈ Rp, X(0) = X0, f : Rp+2n → Rp.

ii. The regulation and disturbance rejection problem of 1-D quasilinear
hyperbolic PDEs with in domain control. These systems are given by

∂η

∂t
(x, t) + A(η(x, t), u(t))

∂η

∂x
(x, t) = F(η(x, t)), (1.5)

where η : [0, +∞) × [0, L] → Rn is the vector of state variables,
A : Rn+1 →Mn,n(R), u : [0,+∞)→ R and F : Rn → Rn.

The initial condition of (1.5) is

η(x, t) = η0(x), x ∈ [0, L], (1.6)
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and the boundary conditions are

hi,0(η(0, t), Bi,0Y (t)) = 0, t ∈ [0,+∞), (1.7)

hi,L(η(L, t), Bi,LY (t)) = 0, t ∈ [0,+∞), (1.8)

i = 1, . . . , n,

where hi,0, hi,L : Rn+1 → R, Bi,0 = (bi1,0 . . . bip,0) and Bi,L =
(bi1,L . . . bip,L) are row vectors with real entries and

dY

dt
(t) = φ(Y (t),η(L, t),η(0, t)),

with Y ∈ Rp, Y (0) = Y0, φ : Rp+2n → Rp.

The control problem (1.1)-(1.4) is studied with an eye on the appli-
cation of suppressing slugging oscillations in oil production facilities and
thermoacoustic oscillations in the Rijke tube.

Slugging is a well-known phenomenon that occurs in oil production
facilities and is characterized by an intermittent axial distribution of gas
and liquid, leading to an oscillating flow pattern. Consequently, sudden
variations of oil production due to changes in pressure and flow rates of
liquid and gas may occur. Slugging may have undesirable effects on the oil
production process [28]. It will affect the oil production and will reduce the
lifetime and increase the maintenance costs of the processing equipment.
Therefore, its suppression by automatic control is of great economic interest.

Regarding the phenomenon of thermoacoustic oscillations, it is described
by high levels of sound produced due to the feedback between heat release
rate fluctuations and acoustic pressure fluctuations in confined spaces. This
phenomenon remains a serious problem in the development of gas turbines
for aeroengines as well as for power generation applications [29]. In such
applications, the thermoacoustic instabilities are undesirable due to the
additional mechanical strain caused by the pressure waves on the com-
ponents. Moreover, suppress these oscillations is essential for developing
engines for propulsion and power generation with high efficiency, increased
performance, and low emissions. In this thesis, we use the Rijke tube as a
prototype system to study this problem, since the absence of combustion
process in the Rijke tube turns the modeling and system analysis problem
significantly more treatable than the other cases where thermoacoustic
instability occurs [30].

The motivation for the study of the class of systems (1.5)-(1.8) emerged
during a stay at the Grupo de Automática, Robótica y Mecatrónica of the
Universidad de Almeŕıa, Spain, under the supervision of the professors
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(a) Solar power plant at CIESOL building,
Almeŕıa - Spain

(b) Tubular photobioreactor at Las Pal-
merillas experimental station, Almeŕıa -
Spain.

Figure 1.1: Systems of interest for the in domain control problem.

Manuel Berenguel Soria and José Luis Guzmán Sanchez, in which we de-
veloped control methodologies for an experimental solar plant at the Solar
Energy Research Center (CIESOL) and an industrial tubular photobiore-
actor located at Las Palmerillas experimental station (Figure 1.1).

The control objective in the solar power plant is to maintain the outlet
temperature of the field at a desired level in spite of disturbances (in this
case the solar irradiance, ambient temperature and the inlet temperature of
the fluid). Regarding the tubular photobioreactor, the control objective is
to regulate the pH in its optimal value to maximize the biomass production
and also to attenuate the undesirable transient caused by the disturbances.

Although these systems have similar control objective, they have differ-
ent relative degrees. As will be shown, the solar power plant has relative
degree one, i.e., the output variable must be derived only one time to
establish an explicit relation with the control variable. Whereas the pho-
tobioreactor has relative degree two. This property influences directly the
control design [31].

1.3 Objectives

1.3.1 General objective

The general objective of this thesis is to study and explore control method-
ologies, in a theoretical-experimental way, for the specific class of control
problems of systems modeled by hyperbolic PDEs described in Section 1.2.
The focus of this study is on the nominal model of the systems and para-
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metric uncertainties are not considered. Moreover, the results are presented,
whenever possible, in a general form, in order to generate results of interest
to a significant portion of the scientific community.

1.3.2 Specific objectives

In order to achieve the general objective, the following specific objectives
are listed:

• To study the properties of first-order hyperbolic systems.

• To study, in the bibliography, relevant information about the control
of first-order hyperbolic systems.

• To develop control methodologies that solve the control problem of
the systems of interest.

• To test experimentally the control methodologies in the control prob-
lems of interest.

1.4 Contributions

Regarding the use of the theoretical tools, it can be highlighted as contri-
bution of this thesis the application and experimental validation of infinite-
dimensional control methodologies on industrial processes. Generally, these
control methodologies are only tested by simulation on simple numerical
examples.

In Chapter 3, we develop a static boundary stabilizing control law for the
slugging problem of oil production facilities, based on the methodology of
[7]. The proposed control law guarantees the convergence of the states to the
origin in the L 2-norm. Comparing to other control methodologies applied
on the slugging problem, the proposed control law guarantees stability for
greater values of the choke opening. Most of the control methodologies (see
for instance [28]) stabilize the system for choke opening at the maximum of
20-25%, whereas the control law developed in this thesis can achieve values
of choke opening of more than 45%.

Another contribution is the development of necessary and sufficient
conditions for closed-loop stability of the thermoacoustic oscillations in the
Rijke tube, presented in Chapter 4. In this case, we used some properties
of the system transfer function to guarantee the input-output stability
through the use of Nyquist-type test.

In Chapter 5, we develop a control law for the regulation problem of a
solar power plant and a tubular photobioreactor. The control methodology
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used to solve these control problems is the sliding mode control together
with the method of characteristics [21–24]. Moreover, an equivalent control
law is developed for these systems to avoid the chattering phenomenon,
an inherent characteristic of sliding mode control [32]. Furthermore, we
suggested to use the total inorganic carbon as output to control the pH
of the tubular photobioreactor. The main advantage of this approach is
that it allows to derive an easier control law expression if compared to
using directly the pH variable for designing the controller, due to the
model complexity. Moreover, a comparative study between this control
methodology and another classic methodologies, such as PID and model
predictive controllers, was shown in [41, 42]. Through a set of numerical
tests it was shown that the DSMC approach is better than PID and model
predictive controllers in settling time and disturbances rejection.

Finally, in Appendix E we develop two methodologies to maximize
the biomass production in tubular photobioreactors. These methodologies
achieved higher biomass production than the classical strategy that is
currently used in the industry. However, as this is not the main topic of
this thesis, we present these results as an appendix.

1.4.1 Publications

Parts of the thesis are contained in the following conference papers and
articles.

Conference papers

[33] G. A. Andrade, D. J. Pagano, I. Fernández, J. L. Guzmán, and M.
Berenguel. Boundary control of an industrial tubular photobioreactor using
sliding mode control. In: Proceedings of the 19th World Congress of the
International Federation of Automatic Control. Cape Town, South Africa,
2014. p. 4903-4908.

[34] G. A. Andrade, D. J. Pagano, J. L. Guzmán, and M. Berenguel. Op-
timización de la producción de biomasa en fotobiorreactores tubular. In:
Proceedings of the 35th Jornadas de Automática. Valencia, Spain, 2014. p.
513-519.

[35] I. Fernández, G. A. Andrade, J. L. Guzmán, M. Berenguel, and D.
J. Pagano. Modelo NARMAX de pH en un fotobiorreactor tubular de
microalgas. In: Proceedings of the 34th Jornadas de Automática. Barcelona,
Spain, 2013. p. 550-557.

[11] G. A. de Andrade, and D. J. Pagano. Boundary control for stabilization
of slugging oscillations. In: Proceedings of the 2th IFAC Workshop on
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Automatic Control in Offshore Oil and Gas Production. Florianópolis,
Brazil, 2015. p. 77-82.
[36] I. Fernández, M. Berenguel, J. L. Guzmán, F. G. Acién, G. A. Andrade,
and D. J. Pagano. Hierarchical non-linear control of a tubular photobiore-
actor. In: Proceedings of the 5th IFAC Conference on Nonlinear Model
Predictive Control. Seville, Spain, 2015. p. 224-229.
[37] G. A. de Andrade, Vazquez, R. and D. J. Pagano. Boundary feedback
control of unstable thermoacoustic oscillations in the rijke tube. In: Pro-
ceedings of the 2th IFAC Workshop on Control of Systems Governed by
Partial Differential Equations. Bertinoro, Italy, 2016. p. 48-53.
[38] G. A. de Andrade, Vazquez, R. and D. J. Pagano. Boundary control of a
Rijke Tube using irrational transfer functions with experimental validation.
Submitted to the 20th World Congress of the International Federation of
Automatic Control.

Articles

[39] G. A. Andrade, D. J. Pagano, J. D. Álvarez, and M. Berenguel. Dis-
tributed sliding mode control: Application to a solar power plant. Journal
of Control, Automation and Electrical Systems, v.25, n. 3, p. 291-302, 2014.
[40] I. Fernández, F. G. Acién, M. Berenguel, J. L. Guzmán, G. A. Andrade,
and D. J. Pagano. A lumped parameter chemical-physical model for tubular
photobioreactors. Chemical Engineering Science, v. 112, p. 116-129, 2014.
[41] G. A. de Andrade, J. D. Álvarez, D. J. Pagano, and M. Berenguel.
Nonlinear controllers for solar thermal plants: a comparative study. Control
Engineering Practice, v. 43, p. 12-20, 2015.
[42] G. A. de Andrade, D. J. Pagano, J. L. Guzmán, M. Berenguel, I. Fer-
nández, and F. G. Acién. Distributed sliding mode control of pH in tubular
photobioreactors. IEEE Transactions on Control Systems Technology, v.
24, p. 1160-1173, 2016.
[43] G. A. de Andrade, M. Berenguel, J. L. Guzmán, D. J. Pagano, and F.
G. Acién. Optimization of biomass production in outdoor tubular photo-
bioreactors. Journal of Process Control, v. 37, p. 58-69, 2016.
[44] I. Fernández, M. Berenguel, J. L. Guzmán, F. G. Acién, G. A. de
Andrade, and D. J. Pagano. Hierarchical control for microalgae biomass
production in photobioreactors. Control Engineering Practice, v. 54, p.
246-255, 2016.

1.5 Organization of the thesis

This thesis is organized as follows.
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• Chapter 2 focus on the properties and main theorems related to
first-order hyperbolic systems. The definition of hyperbolicity, the
Cauchy problem and the mixed initial-boundary value problem are
introduce. The definition of characteristic coordinates, which is used
to transform the PDE system into the well-known characteristic form
is also introduced. All these definitions and properties will be used
in the remaining chapters for the controllers design.

• In Chapter 3 we study the problem of suppressing slugging phe-
nomenon in oil facilities by means of a stabilizing boundary control
law. We start the chapter by stating the proposed control methodol-
ogy for general 1-D linear hyperbolic PDE systems. Then, we show
how to apply this methodology to the slugging control problem. The
resulting control law only needs measurements of pressure at the
outlet valve, the bottom pressure and total flow-rate measurement
through the outlet valve. The closed-loop stability result is stated
and proved by Lyapunov function approach. Simulation results on a
nonlinear model of the slugging phenomenon shows the effectiveness
of the results.

• In chapter 4 we focuses on the stabilization of thermoacoustic oscilla-
tions in the Rijke tube, under a frequency domain approach. First, the
theoretical model of the Rijke tube is rigorously studied to derive an
irrational transfer function. Then, a control law is designed by using
classical frequency domain tools to guarantee input-output stability.
We test the proposed control methodology in an experimental setup
to show its effectiveness and real-life applicability of the method.

• In Chapter 5 we study the regulation problem and disturbance rejec-
tion of hyperbolic PDEs with in domain control. For this case, we
use the sliding mode control methodology together with the method
of characteristics. We state this methodology for systems with rela-
tive degree one and two, respectively. The development of an equiv-
alent control law to avoid the chattering phenomenon, an intrinsic
characteristic of this methodology, is treated. The results are tested
experimentally in a solar power plant and a tubular photobioreactor
of industrial scale.

• The concluding remarks and future perspectives are given in Chapter
6.

• In Appendices A-D we describe the systems that were used to val-
idate the control methodologies in Chapters 3- 5. In each of these
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appendices is given a brief description of the plant, the mathematical
model and the control problem.

• Appendix E gives two methods to calculate the optimal medium
culture flow rate in order to maximize the biomass production in
outdoor photobioreactors. One methodology is based on the optimal
control theory. In this context, a direct method is used to discretize
the optimal control problem and a nonlinear programming technique
is applied into the resulting optimization problem. The other method-
ology calculates only the culture medium injection time, while the
culture medium flow rate is maintained constant during this time.
The results are validated experimentally in a tubular photobioreactor
of industrial scale. However, as this is not the main topic of this thesis,
we present these results in Appendix E.
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First-order hyperbolic systems

In this chapter, we discuss the main concepts related to first-order hyper-
bolic systems: hyperbolicity, characteristic coordinates, the Cauchy problem
and the mixed initial-boundary value problem. The material shown in this
chapter was extracted from [45–48]. The chapter is organized as follows. In
section 2.1 we define the class of first-order hyperbolic systems of interest
in this thesis. The characteristic form of first-order hyperbolic systems is
introduced in Section 2.2. The Cauchy problem and mixed initial-boundary
value problem are discussed in Sections 2.3 and 2.4, respectively.

2.1 First-order hyperbolic systems

We consider the following first-order quasilinear system

∂υ

∂t
(x, t) + A(υ(x, t))

∂υ

∂x
(x, t) = F(υ(x, t)), (2.1)

where t ∈ [0,+∞) is the time, x ∈ [0, L] is the space, υ : [0, L]×[0, +∞)→
Rn is the state vector, A : Rn → Mn,n(R) and F : Rn → Rn are of class
C1.

Definition 2.1. The system (2.1) is hyperbolic if, for any given υ on the do-
main under consideration, A(υ(x, t)) has n real eigenvalues λ1(υ(x, t)), . . . ,
, λn(υ(x, t)), a complete set of left (respectively right) eigenvectors li(υ(x, t))
= (li1(υ(x, t)), . . . , lin(υ(x, t)) (respectively ri(υ(x, t)) = (r1i(υ(x, t)),
. . . , rni(υ(x, t))T ), for i = 1, . . . , n, such that

li(υ(x, t))A(υ(x, t)) = λi(υ(x, t))li(υ(x, t)), (2.2)
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and

A(υ(x, t))ri(υ(x, t)) = λi(υ(x, t))ri(υ(x, t)). (2.3)

We have

det |lij(υ(x, t))| 6= 0, (respectively det |rij(υ(x, t))| 6= 0). (2.4)

Without loss of generality, we may assume that on the domain under
consideration

li(υ(x, t))rj(υ(x, t)) ≡ δij (i, j = 1, . . . , n) (2.5)

and

rTi (υ(x, t))ri(υ(x, t)) ≡ 1 (i = 1, . . . , n), (2.6)

where δi,j stands for the Kronecker symbol.
Let

L(υ(x, t)) =

 l1(υ(x, t))
...

ln(υ(x, t))

 = lij(υ(x, t)), (2.7)

R(υ(x, t)) =

(
r1(υ(x, t)) . . . rn(υ(x, t))

)
= rij(υ(x, t)), (2.8)

be the matrices composed of the left and right eigenvectors respectively,
and

Λ(υ(x, t)) = diag{λ1(υ(x, t)), . . . , λn(υ(x, t))}. (2.9)

Then, by (2.2)-(2.3), immediately follows that

L(υ(x, t))A(υ(x, t)) = Λ(υ(x, t))L(υ(x, t)), (2.10)

and

A(υ(x, t))R(υ(x, t)) = Λ(υ(x, t))R(υ(x, t)). (2.11)

Moreover, by (2.5) we have

L(υ(x, t))R(υ(x, t)) = I, (2.12)

where I is the n× n unit matrix. Notice that R(υ(x, t)) = L(υ(x, t))−1.
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Definition 2.2. If, for any given υ(x, t) on the domain under consideration,
A(υ(x, t)) has n distinct real eigenvalues, i.e.,

λ1(υ(x, t)) < λ2(υ(x, t)) < · · · < λn(υ(x, t)), (2.13)

then, the set of left (respectively right) eigenvectors must be complete. This
kind of hyperbolic system (2.1) is called to be a strictly hyperbolic sys-
tem.

As shown in [47], for any strictly hyperbolic system, all λi(υ(x, t)),
li(υ(x, t)) and ri(υ(x, t)) (i = 1, . . . , n) have the same regularity as
A(υ(x, t)). However, it is not always the case for general hyperbolic sys-
tems.

Example 2.1. Let

A(υ) =

(
0 υ
υ2 0

)
Note that A(υ) ∈ C∞, but the eigenvalues λ1,2(υ) = ±υ 3

2 /∈ C∞ at υ = 0.

Example 2.2. Let

A(υ) =

 e−
1
υ2

(
cos
(

2
υ

)
sin cos

(
2
υ

)
sin
(

2
υ

)
− cos

(
2
υ

) ) , υ 6= 0

0, υ = 0

It is easy to see that A(υ) ∈ C∞ and the eigenvalues λ1,2 = ±e−
1
υ2 ∈ C∞.

However, one can not find a complete set of left (respectively right) eigen-
vectors {l1(υ), l2(υ)} (respectively {r1(υ), r2(υ)}) depending continuously
on υ at υ = 0.

2.2 Characteristic form of a hyperbolic systems

For hyperbolic systems, there exists a change of coordinates ξ(x, t) =
ψ(υ(x, t)) such that (2.1) can be transformed into a system of coupled
transport equation

∂ξi
∂t

(x, t) + λi(ξ(x, t))
∂ξi
∂x

(x, t) = gi(ξ(x, t)) (i = 1, . . . , n) (2.14)

This change of coordinates has the following properties:
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• The function ψ : Rn → Rn is a diffeomorphism:

ξ(x, t) = ϕ(υ(x, t))↔ υ(x, t) = ψ−1(ξ(x, t)),

with Jacobian matrix Ψ(υ(x, t)) , ∂ψ/∂υ.

• The Jacobian matrix Ψ(υ(x, t)) diagonalizes the matrix A(υ(x, t)):

Ψ(υ(x, t))A(υ(x, t)) = Λ(υ(x, t))Ψ(υ(x, t)).

Clearly, this change of coordinates exists for any hyperbolic PDE sys-
tem with A ∈ Mn,n(R) constant and A diagonalizable. If the entries of
A are nonlinear, finding the change of coordinates ξ(x, t) = ψ(υ(x, t))
requires to find a solution of the first order PDE Ψ(υ(x, t))A(υ(x, t)) =
Λ(υ(x, t))Ψ(υ(x, t)).

Example 2.3. Consider the linearized Saint-Venant system for a single open
channel

∂υ

∂t
(x, t) + A

∂υ

∂x
(x, t) = F(υ(x, t)),

with

υ =

(
h
v

)
, A =

(
V H
g V

)
, F(υ) =

(
0

CV
2

H
2 h− 2CV

H
v

)
.

In these expressions, h(x, t) , H(x, t)−H and v(x, t) , V (x, t)− V
denote the deviations of the water height, H, and water velocity, V , with
respect to the steady-states H and V , respectively. The gravity constant is
denoted by g and C is a friction parameter.

Notice that A has two distinct non-zero eigenvalues, namely,

λ1 = V +

√
gH > 0,

λ2 = V −
√
gH < 0.

The corresponding left eigenvectors can be taken as

l1 =

(√
g

H
, 1

)
, l2 =

(
−
√

g

H
, 1

)
.

It follows that the characteristic coordinates can be defined as

ξ1(x, t) = v(x, t) + h(x, t)

√
g

H
,

ξ2(x, t) = v(x, t)− h(x, t)

√
g

H
.
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The inverse transformation can also be computed from the above equa-
tion:

h(x, t) =
ξ1(x, t)− ξ2(x, t)

2

√
H

g
,

v(x, t) =
ξ1(x, t) + ξ2(x, t)

2
.

One can observe that the quantity ξi can be seen as the directional
derivative dξi/dt at point (x, t) along the curve (xi(x, t, s), τi(x, t, s)) sat-
isfying

dxi
ds

(xi(x, t, s), τi(x, t, s)) = λi(ξ(xi(x, t, s), τi(x, t, s)), xi(x, t, 0) = x0,

(2.15)

dτi
ds

(xi(x, t, s), τi(x, t, s)) = 1, τi(x, t, 0) = 0.

(2.16)

This curve is called characteristic curve. The quantity λi is called charac-
teristic velocity and its sign directly influences the direction of the solution
propagation ξi. This property, illustrated in Figure 2.1, is very important
and will be used for the results that will be developed in the following
chapters.

Figure 2.1: Representation of the characteristic curves.

The derivative of ξi with respect to s then can be written

dξi
ds

(xi(x, t, s), τi(x, t, s)) = gi(ξ(xi(x, t, s), τi(x, t, s))

ξi(xi(x, t, 0), 0, 0) = ξi,0(x0, 0). (2.17)
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Remark 2.1. If gi(ξ(x, t)) = 0 for some i, then ξi is constant (or invariant)
along the i-th characteristic curve, since dξi

ds (xi(x, t, s), τi(x, t, s)) = 0. In
this case, the quantity ξi is called Riemann invariant.

Definition 2.3. The vector field

κi = (gi(ξ(xi(x, t, s), τi(x, t, s))), λi(xi(x, t, s)), τi(x, t, s)), 1)

is called i-th characteristic vector field of (2.14).

This method of transforming the PDE system (2.14) into a set of ODEs
along the characteristic curvers is called method of characteristics [45].
Once these ODEs are found, they can be solved and transformed into a
solution for the original PDE system. However, it is generaly not possible
to separately solve the differential equations of the characteristic curves
(2.15)-(2.16) and the system variables (2.17). Therefore, it is necessary to
integrate them simultaneously, generally using numerical methods.

The existence and unicity of continuously differentiable solutions of the
above PDE system on an interval t ∈ [0, δ] is known as Cauchy problem
and has been intensively studied in the literature [45, 47, 49]. In general,
this is shown on the basis of the integral representation

ξi(x, t) = ξi(xi(x, t, 0), 0, 0) +

∫ t

0

gi(ξ(xi(x, t, s), τi(x, t, s))ds

of (2.17). In the next section we give a sufficient condition for the existence
of a solution for the Cauchy problem.

2.3 The Cauchy problem

Consider the Cauchy problem for system (2.1)

∂υ

∂t
(x, t) + A(υ(x, t))

∂υ

∂x
(x, t) = F(υ(x, t)) (2.18)

υ(x, 0) = ϕ(x), x ∈ (−∞, ∞), (2.19)

where ϕ(x) = (ϕ1(x), ..., ϕn(x)) is a given C1 function of x with bounded
C1 norm ||υ||1 = supx |υ(x)|+ supx |υ′(x)|.

Noting that in the corresponding characteristic form (2.14), for each
i = 1, . . . , n, the i-th equation is an ordinary differential equation along
the i-th characteristic, we have that [47, 50]:



2.3 The Cauchy problem 41

Theorem 2.1. Suppose that λi(υ(x, t)), li(υ(x, t)) (i = 1, . . . , n) and
F(υ(x, t)) are all C1 functions and ϕ(x) is a C1 vector function with
bounded C1 norm. Then, there exists δ > 0 such that the Cauchy problem
(2.18)-(2.19) admits a unique local C1 solution υ on the domain

{(x, t)|0 ≤ t ≤ δ, −∞ < x < +∞} .

Moreover, if

F(0) = 0, (2.20)

then, for any given A(υ(x, t)) and F(υ(x, t)), δ > 0 can be taken as
δ = δ(||ϕ(x))||1) depending only on the C1 norm ||ϕ(x))||1.

Example 2.4. Consider the Cauchy problem for the Burgers equation

∂υ

∂t
(x, t) + υ(x, t)

∂υ

∂x
(x, t) = 0, (2.21)

u(x, 0) = ϕ(x), (2.22)

where ϕ(x) is a C1 function.
On the existence domain of the solution υ to the Cauchy problem, the

characteristic curve is defined by

dx1

ds
(x1(x, t, s), τ1(x, t, s)) = υ(x1(x, t, s), τ1(x, t, s)), (2.23)

dτ1
ds

(x1(x, t, s), τ1(x, t, s)) = 1. (2.24)

Moreover, along the characteristic curve we have

dυ

ds
(x1(x, t, s), τ1(x, t, s)) = 0, (2.25)

namely, υ takes a constant value and therefore υ is Riemann invariant.
Furthermore, since υ is constant, it follows, by (2.23)-(2.24), that the char-
acteristic curve must be a straight line.

Solving (2.23)-(2.25) with the initial data (2.22), we get that the char-
acteristic curve passing through any given point (x, t) = (x0, 0) is

x = x0ϕ(x0)t (2.26)

on which

υ = ϕ(x0) (2.27)
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Hence, if the C1 norm of ϕ(x) is bounded, for small values of t, by
means of the implicit function theorem we can get from (2.26) that

x0 = x0(x, t). (2.28)

Substituting (2.28) into (2.27) gives the solution of the Cauchy problem
(2.21)-(2.22):

υ = ϕ(x0(x, t))

Note that this solution exists in general only locally in time. In fact, if
ϕ(x) is not a non decreasing function of x, there exist two points (0, xa)
and (0, xb) on the initial axis, such that xa < xb and ϕ(xa) > ϕ(xb).

Thus, the characteristic curves passing through these two points are
respectively

x = xa + ϕ(xa)t,

x = xb + ϕ(xb)t,

must intersect each other in a finite time and, since the solution υ takes the
different values ϕ(xa) and ϕ(xb) on these two characteristic curves, at the
intersection point the value of the solution can not be uniquely determined.
In this case, the Cauchy problem (2.21)-(2.22) does not admits a global
solution on t ≥ 0, i.e., the solution to this Cauchy problem must blow up
in a finite time.

Remark 2.2. When the initial condition ϕ(x) is defined in a finite interval
xa ≤ x ≤ xb instead of the whole x-axis, then, Theorem 2.1 is still valid
on the corresponding maximum determinate domain:

{(x, t)|0 ≤ t ≤ δ, xa(x, t, s) < x < xb(x, t, s)} ,

where x = xa(x, t, s) e x = xb(x, t, s) are determined by

dxa
ds

= max
i=1, ..., n

λi(υ(xa(x, t, s), τa(x, t, s)))

dτa
ds

= 1

xa(x, t, 0) = xa,0
τa(x, t, 0) = 0

and 

dxb
ds

= min
i=1, ..., n

λi(υ(xb(x, t, s), τb(x, t, s)))

dτb
ds

= 1

xb(x, t, 0) = xb,0
τb(x, t, 0) = 0
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In other words, x = xa(x, t, s) is the rightmost characteristic passing
through the point (x, t) = (xa, τa) and x = xb(x, t, s) is the leftmost
characteristic passing through the point (x, t) = (xb, τb).

2.4 Mixed initial-boundary value problem

We consider the following mixed initial-boundary value problem:

∂υ

∂t
(x, t) + A(υ(x, t))

∂υ

∂x
(x, t) = F(υ(x, t)) (2.29)

υ(x, 0) = ϕ(x), x ∈ [0, L], (2.30)

ṽs = hs(ṽ1, . . . , ṽm, t), (s = m+ 1, . . . , n) (2.31)

ṽr = hr(ṽm+1, . . . , ṽn, t), (r = 1, . . . , m) (2.32)

where

ṽi = li(ϕ(x))υ (i = 1, . . . , n).

Without loss of generality we assume that

gi(t, 0, . . . , 0) = 0 (i = 1, . . . , n). (2.33)

We suppose that matrix A(υ(x, t)), in (2.29), has no zero eigenvalues,
i.e.,

λr(υ(x, t)) < 0 < λs(υ(x, t)) (r = 1, . . . , m; s = m+ 1, . . . , n).
(2.34)

Moreover, the conditions ofC1 compatibility are supposed to be satisfied
at the points (x, t) = (0, 0) and (L, 0) respectively. More precisely, the
conditions of C1 compatibility at the point (x, t) = (0, 0) are

ls(υ
0(0))υ0(0) = hs(l1(υ0(0))υ0(0), . . . , lm(υ0(0))υ0(0), 0)

(s = m+ 1, . . . , n) (2.35)

and

∂

∂t

[
ls(υ

0(0))υ0(0)
]

=
∂

∂t

[
hs(l1(υ0(x))υ0(0), . . . , lm(υ0(x))υ0(0), 0)

]
.

(2.36)

Similarly, for the point (x, t) = (L, 0)

ls(υ
0(L))υ0(L) = hs(l1(υ0(L))υ0(L), . . . , lm(υ0(L))υ0(L), 0)

para s = m+ 1, . . . , n (2.37)
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and

∂

∂t

[
ls(υ

0(L))υ0(L)
]

=
∂

∂t

[
hs(l1(υ0(L))υ0(L), . . . , lm(υ0(L))υ0(0), 0)

]
.

(2.38)

Under these assumptions, we have[47]:

Theorem 2.2. Suppose that λi(υ(x, t)), li(υ(x, t)), F(υ(x, t)), hi(t) (i =
1, . . . , n), and ϕ(x) are all C1 functions with respect to their arguments.
Suppose furthermore that (2.4), (2.33) and (2.34) hold. Suppose finally that
the conditions of C1 compatibility are satisfied at the point (x, t) = (0, 0)
and (L, 0) respectively. Then, there exists δ > 0 such that the mixed initial-
boundary value problem (2.18)-(2.32) admits a unique local C1 solution υ
on the domain

R(δ) = {(x, t)|0 ≤ t ≤ δ, 0 ≤ x ≤ L} .

Moreover, if (2.20) holds, then, for any given A(υ(x, t)), F(υ(x, t))
and gi(t, ·) (i = 1, . . . , n), δ > 0 can be taken as δ = δ(||ϕ||1, ||h||1), i.e.,
depending only on the C1 norms ||ϕ||1 and ||h||1.

Remark 2.3. Suppose that there are zero eigenvalues, but the following
inequalities are satisfied

λp(υ(x, t)) < λq(υ(x, t)) ≡ 0 < λr(υ(x, t))

(p = 1, . . . , l; q = l + 1, . . . , m; r = m+ 1, . . . , n).

Then, the boundary conditions (2.31)-(2.32) should be replaced by

x = 0 : ṽr = gr(ṽ1, . . . , ṽl, ṽl+1, . . . , ṽm, t) (r = m+ 1, . . . , n)

x = L : ṽp = gp(ṽl+1, . . . , ṽm, ṽm+1, . . . , ṽn, t) (p = 1, . . . , l)

with

hp(t, 0, . . . , 0) ≡ hr(t, 0, . . . , 0) ≡ 0(p = 1, . . . , l; r = m+ 1, . . . , n).

In order to Theorem 2.2 be applied.

Remark 2.4. In [51] it was shown how to extend these results to the case of
general differential boundary conditions with a much more involved technical
development then Theorem 2.2.

Remark 2.5. Extensions of the local existence results shown in Theorem 2.1
and 2.2 have been discussed in numerous contributions (cf. [49] and [47]).
However, these results are in general valid only under very conservative
assumptions on the initial condition.



Chapter 3

Boundary control of linear
hyperbolic systems

In this chapter, the problem of suppressing slugging phenomenon is investi-
gated. Industrial facilities such as gas-lifted wells and offshore production
oil-risers are examples of system where occurs such phenomenon. To study
this problem, we consider that these systems are written as a set of 3× 3
hyperbolic PDEs of balance laws, where the control variable appears at the
right boundary condition (see Appendix A). By means of the characteristic
coordinates approach, we deduce a stabilizing control law. The exponential
stability of the equilibrium is proved by means of a Lyapunov stability
analysis. The chapter is organized as follows. In section 3.1 we detail the
notation used throughout the chapter. In Section 3.2 we derive the control
methodology theory. The design of this control strategy to the slugging
problem and simulation results are shown in Section 3.3. The conclusions
are given in Section 3.4.

3.1 Definitions and notations

In this section we give the definitions and notations used throughout this
chapter. We are interested in the following 1-D n × n linear hyperbolic
system:

∂ξ

∂t
(x, t) + Λ

∂ξ

∂x
(x, t)−Mξ(x, t) = 0, (3.1)

where t ∈ [0, +∞) is the time variable, x ∈ [0, L] is the space variable,
ξ : [0, +∞) × [0, L] → Rn is the vector of state variables, and Λ, M ∈
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Mn,n(R). We assume that Λ is diagonal with non-zero real diagonal entries
such that

Λ = diag{λ1, λ2, . . . , λn},
λi > 0 ∀ i ∈ {1, . . . , m},
λi < 0 ∀ i ∈ {m+ 1, . . . , n}.

For legibility and to facilitate the computations to be presented in this
chapter, we introduce the following notations:

ξ+ =

 ξ1
...
ξm

 , ξ− =

 ξm+1

...
ξn

 , ξ =

(
ξ+

ξ−

)
, (3.2)

and

Λ+ = diag{λ1, ..., λm},
Λ− = diag{λm+1, ..., λn}.

Using these notations, system (3.1) is rewritten to

∂

∂t

(
ξ+

ξ−

)
+

(
Λ+ 0
0 Λ−

)
∂

∂x

(
ξ+

ξ−

)
−M

(
ξ+

ξ−

)
= 0 (3.3)

The initial condition of (3.3) is

ξ(x, 0) = ξ0(x), x ∈ [0, L], (3.4)

and the boundary conditions are

gi,0(ξ(0, t), ξ(L, t), u0(t)) = 0, t ∈ [0,+∞), (3.5)

gi,L(ξ(0, t), ξ(L, t), uL(t)) = 0, t ∈ [0,+∞), (3.6)

i = 1, . . . , n,

where gi,0, gi,L : Rn+1 → R and u0, uL : [0,+∞) → R are the control
variables.

Our objective is to design u0 and uL such that (3.3)-(3.6) is exponen-
tially stable. We adopt the following definition for exponential stability of
(3.3)-(3.6):

Definition 3.1. The linear hyperbolic system (3.3)-(3.6) is exponentially
stable if for every T > 0, there exists C(T ) > 0 such that, for every ξ0 ∈
L 2([0, L];Rn), the solution to the Cauchy problem (3.3)-(3.6) satisfies

||ξ(·, t)||L 2([0,L]) ≤ Ce−at||ξ0||L 2([0,L]).
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3.2 The boundary control law

Following [52], a simple solution to guarantee exponential stability of system
(3.3)-(3.6) is to impose a control action u0 and uL such that boundary
conditions (3.5)-(3.6) are transformed to(

ξ+(0, t)
ξ−(L, t)

)
=

(
K00 K01

K10 K11

)
︸ ︷︷ ︸

K

(
ξ+(L, t)
ξ−(0, t)

)
, (3.7)

where K is a real matrix.

The Cauchy problem (3.3), with initial condition (3.4) and boundary
condition (3.7) is well-posed [51]. This means that for any initial condition
ξ0 ∈ L 2([0, L]; Rn) and for every T > 0, there exists C(T ) > 0 such
that a solution ξ(x, t) ∈ C0([0, +∞); L 2([0, L]; Rn)) exists, is unique
and satisfies

‖ξ(·, t)‖L 2([0, L]) ≤ C(T )
∥∥ξ0
∥∥

L 2([0, L])
, ∀t ∈ [0, T ].

In the next subsection we will impose sufficient conditions for (3.3)-(3.4)
under the boundary conditions (3.7) to guarantee exponential stability
according to Definition 3.1.

3.2.1 Stability analysis

Consider the following Lyapunov function

V =

∫ L

0

ξTP(x)ξdx, (3.8)

where P(x) , diag{pie−σiµx, i = 1, . . . , n}, with µ > 0, pi > 0 positive
real numbers and σi = sign(λi).

The time derivative of V along the system (3.3)-(3.4) and (3.7) is

dV

dt
=

∫ L

0

(
−∂ξ

T

∂x
ΛP(x)ξ − ξTP(x)Λ

∂ξ

∂x
+ ξTMTP(x)ξ+

ξTP(x)Mξ

)
dx.
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Then, integrating by parts, we have:

dV

dt
= −

(
ξT (L, t) ξT (0, t)

)( ΛP(L) 0
0 −ΛP(0)

)(
ξ(L, t)
ξ(0, t)

)
+∫ L

0

ξT
(
−µ|Λ|P(x) + MTP(x) + P(x)M

)
ξ dx.

Note that if dV/dt is negative definite, then the system is exponentially
stable. We then have following theorem [8]:

Theorem 3.1. The system (3.3) with initial condition (3.4) and boundary
conditions (3.5)-(3.6), with u0 and uL such that (3.7) holds, is exponentially
stable if there exist µ > 0 and pi > 0, i = 1, . . . , n such that

1. The boundary quadratic form(
ξT (L, t) ξT (0, t)

)( ΛP(L) 0
0 −ΛP(0)

)(
ξ(L, t)
ξ(0, t)

)
,

is positive definite under the constraints of the linear boundary con-
ditions

ξ+(0, t)−K00ξ
+(L, t)−K01ξ

−(0, t) = 0,

ξ−(L, t)−K10ξ
+(L, t)−K01ξ

−(0, t) = 0,

∀t ≥ 0 along the solutions of system (3.3) with initial condition (3.4)
and boundary conditions (3.5)-(3.6), with u0 and uL such that (3.7)
holds.

2. The matrix −µ|Λ|P + MTP(x) + P(x)M is negative definite ∀x ∈
(0, L).

Definition 3.2. Boundary conditions that satisfy condition 1 of the previous
theorem are called dissipative boundary conditions.

3.2.2 Explicit dissipative boundary conditions

In this section, we will show a variant of Theorem 3.1. This approach allow
us to obtain an explicit characterization of a dissipative boundary condition
which guarantees the system exponential stability in the case where ‖M‖
is sufficiently small.

Let Dp denote the set of diagonal p×p real matrices with strictly positive
diagonal entries. Then, the Lyapunov function (3.8) is rewritten to

V =

∫ L

0

[(
ξ+TP0ξ

+
)
e−µx +

(
ξ−TP1ξ

−
)
eµx
]
dx, (3.9)
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where µ > 0 and P0 ∈ Dm, P1 ∈ Dn.
Consider the following norm for the matrix K:

ρ(K) , inf
{
||∆K∆−1||,∆ ∈ S

}
, (3.10)

where || · || is the usual matrix 2-norm and

S =
{

∆ = diag{D0,D1}, D2
0 = P0Λ+, D2

1 = P1Λ−
}
. (3.11)

We have then the following theorem:

Theorem 3.2. If ρ(K) < 1, there exist ε > 0 such that, if ‖M‖ < ε, then
the linear hyperbolic system (3.3) with initial condition (3.4) and boundary
conditions (3.5)-(3.6), with uo and uL such that (3.7) holds, is exponentially
stable.

Proof. Consider the candidate Lyapunov function (3.9). The time deriva-
tive of V is

dV

dt
= −

∫ L

0

∂

∂x

(
ξ+TP0Λ

+ξ+
)
e−µx dx+

∫ L

0

∂

∂x

(
ξ−TP1Λ

−ξ−
)
eµx dx

+

∫ L

0

ξT
(

MTP + PM
)
ξ dx. (3.12)

where P , (P0e
−µx, P1e

µx).
Then, integrating by parts:

dV

dt
= V1 + V2, (3.13)

where

V1 , −
[
ξ+TP0Λ

+ξ+e−µx
]L

0
+
[
ξ−TP1Λ

−ξ−eµx
]L

0
,

V2 ,
∫ L

0

ξT
(
−µPΛ + MTP + PM

)
ξ dx.

To show that dV/dt is negative definite we will show that V1 and V2

are negative definite.
In order to show that V1 is negative definite we introduce the following

notations:

ξ−0 , ξ−(0, t), ξ+
L , ξ+(L, t).
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Substituting the boundary condition (3.7) in V1, we have

V1 = −
[
ξ+TP0Λ

+ξ+e−µx
]L

0
+
[
ξ−TP1Λ

−ξ−eµx
]L

0

= −
(
ξ+T
L P0Λ

+ξ+
Le
−µL + ξ−T0 P1Λ

−ξ−0

)
+(

ξ+T
L KT

00 + ξ−T0 KT
01

)
P0Λ

+
(

K00ξ
+
L + K01ξ

L
0

)
+(

ξ+T
L KT

10 + ξ−T0 KT
11

)
P1Λ

− (K10ξ
+
L + K11ξ

−
0

)
eµL. (3.14)

Since ρ(K) < 1 by hypothesis, there exist D0 ∈ Dn, D1 ∈ Dn−m and
∆ , diag{D0,D1} such that ∥∥∆K∆−1

∥∥ < 1. (3.15)

Select P0 and P1 such that P0Λ+ = D2
0 and P1Λ− = D2

1.
Define z0 , D0ξ

−
0 , z1 , D1ξ

+
1 and zT , (zT0 , z

T
1 ). Then, using the

inequality (3.15), we have

(ξ+T
L KT

00 + ξ−T0 KT
01)P0Λ

+(K00ξ
+
L + K01ξ

−
0 ) + (ξ+T

L KT
10+

ξ−T0 KT
11)P1Λ

−(K10ξ
+
L + K11ξ

−
0 ) =

∥∥∆K∆−1z
∥∥2
< ‖z‖2

= ξ+T
L P0Λ

+ξ+
L + ξ−T0 P1Λ

−ξ−0 . (3.16)

Comparing (3.16) with (3.14) we can therefore conclude that there
exists µ sufficiently small such that V1 is negative definite.

In order to show that V2 is negative definite, it is easy to see that if
there exist ε > 0 such that ‖M‖ < ε then there exists α > 0 such that

V2 ≤ −αV ⇒
dV

dt
= V1 + V2 ≤ −αV.

Consequently the solutions of the system (3.3) with initial condition
(3.4) and boundary conditions (3.6) exponentially converge to the origin in
L 2-norm.

3.3 Application of the boundary control strategy
to the suppression of slugging oscillations in

oil facilities

3.3.1 Steady-state and linearized system

We assume that the steady-state solution for system (A.10) is a constant
solution ξ(x, t) = ξ∗, ∀t ∈ [0,+∞), ∀x ∈ [0, L], satisfying the boundary
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conditions (A.6)-(A.8) and the condition

fυ2
3

(1−υ∗3 )
(

(1−υ∗3 )M2υ∗
2

1 +2MRTρlυ
∗
3υ
∗
1

)
+R2T 2ρ2l υ

∗2
3

2AMdρlυ∗1 ((1−υ∗3 )Mυ∗1+RTρlυ∗3 ) =

− AMρl
(1−υ∗3 )Mυ∗1+RTρlυ∗3

g sin θ(x).

In order to linearize the system (A.10) and its boundary conditions
(A.6)-(A.7), we define the deviations of the states υ1(x, t), υ2(x, t) and
υ3(x, t) with respect to the steady-states υ∗1 , υ∗2 and υ∗3 by

δυ1(x, t) , υ1(x, t)− υ∗1 ,
δυ2(x, t) , υ2(x, t)− υ∗2 ,
δυ3(x, t) , υ3(x, t)− υ∗3 .

Then, the linearized quasilinear model (A.10) around the steady-state
(see [52]) is described by

∂δυ

∂t
(x, t) + F (u∗)

∂δυ

∂x
(x, t) + S̃(υ∗)δυ(x, t) = 0, (3.17)

where

δυ ,
[
δυ1 δυ2 δυ3

]T
,

υ∗ ,
[
υ∗1 υ∗2 υ∗3

]T
,

S̃(u∗) ,
[

∂S
∂υ1

(υ∗) ∂S
∂υ2

(υ∗) ∂S
∂υ3

(υ∗)
]
.

Let ql = (1 − υ3)υ2. Then, the linearized boundary condition (A.6)
results in the following expression:

PIδυ1(0, t) + (1− υ∗3)δυ2(0, t)− υ∗2δυ3(0, t) = 0. (3.18)

Similarly, consider qg = υ3υ2. Then, the linearized boundary condition
(A.7) is given by

υ∗3δυ2(0, t) + υ∗2δυ3(0, t) = 0. (3.19)

Finally, the linearized boundary condition (A.8) is expressed as

δυ2(L, t) = Kυ1δυ1(L, t) +Kυ3δυ3(L, t) +Kuδu(t), (3.20)
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where δu(t) = u(t) − u∗, being u∗ the choke opening steady-state value,
and

Kυ3 = − (ρLRT − υ∗1)υ∗2
2(ρLRTυ∗3 + (1− υ∗3)υ∗1)

,

Kυ1 =
ρLυ

∗
1(2ρLRTυ

∗
3 + (1− υ∗3)υ∗1)− Psρ2

LRTυ
∗
3

2(ρLRTυ∗3 + (1− υ∗3)υ∗1)

υ∗2
ρLυ∗1(υ∗1 − Ps)

,

Ku = Cout

√
ρLυ∗1

ρLRTυ∗3 + (1− υ∗3)υ∗1
(υ∗1 − Ps).

3.3.2 Model in terms of characteristic coordinates

In this section, we transform the system (3.17) into the so-called charac-
teristic form by using the characteristic coordinates [52].

To this aim, let us consider the following change of coordinates:

ξ1(x, t) = δυ2(x, t) + aδυ3(x, t) + bδυ1(x, t), (3.21)

ξ2(x, t) = δυ2(x, t) + aδυ3(x, t)− bδυ1(x, t), (3.22)

ξ3(x, t) = δυ3(x, t), (3.23)

where

a = RTρlυ2−Mυ1υ2
(1−υ3)Mυ1+RTρlυ3

, b = ρl
Aυ1
√
M3RTυ3−MRTυ3υ2

Mυ1((1−υ3)Mυ1RTρlυ3) .

With these new coordinates, the system (3.17) is rewritten in the fol-
lowing form:

∂ξ

∂t
(x, t) + Λ

∂ξ

∂x
(x, t) + Σξ(x, t) = 0, (3.24)

with

ξ ,
[
ξ1(x, t) ξ2(x, t) ξ3(x, t)

]T
,

and Λ is the matrix with the transport speeds, given by

Λ =

 λ1 0 0
0 −|λ2| 0
0 0 λ3

 , (3.25)

with

λ1 =
((1−υ3)AMυ2

1+ARTρlυ3υ1)
√
M3RTυ3

AM2RTρlυ3υ1
+ υ2(1−υ3)

Aρl
+ Rυ3u2

AMυ1
,

λ2 = − ((1−υ3)AMυ2
1+ARTρlυ3υ1)

√
M3RTυ3

AM2RTρlυ3u1
+ υ2(1−υ3)

Aρl
+ Rυ3υ2

AMu1
,

λ3 = −υ2
(1−υ3)Mυ1+RTρlυ3

AMρlυ1
,
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these expression satisfy the following inequalities:

∀x ∈ [0, L] , λ2 < 0 < λ3 < λ1.

The expression for Σ is complicated to be written in details. Then, to
save space, we express its structure as

Σ =

 σ1,1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

0 0 0

 . (3.26)

Note that the last line of Σ is filled with 0. This occurs because the
state variable υ3(x, t) is a Riemann invariant [53]. This structure is also
preserved by the transformation shown in this section.

Several numerical tests performed for the system considered in this work
(see Table A.1 for details about the system geometry) have shown that the
following inequalities hold:

σ1,3 ≡ σ2,3 < 0 < σ1,1 ≡ σ2,1 < σ1,2 ≡ σ2,2

Typical values are σ1,3 ≡ σ2,3 ≈ −425, σ1,2 ≡ σ2,2 ≈ 15224, and
σ1,1 ≡ σ2,1 ≈ 0.4.

Finally, the boundary conditions (3.18)-(3.20), in characteristic coordi-
nates, are expressed as

ξ1(0, t)− ψξ2(0, t) = 0, (3.27)

ξ2(L, t) + k1ξ1(L, t) + k2ξ2(0, t) + k3ξ3(L, t) = 0, (3.28)

ξ3(0, t)− ϕξ2(0, t) = 0, (3.29)

or in matrix form ξ1(0, t)
ξ2(L, t)
ξ3(0, t)

 =

 0 ψ 0
−k1 −k2 −k3

0 ϕ 0


︸ ︷︷ ︸

K

 ξ1(L, 0)
ξ2(0, t)
ξ3(L, t)

 , (3.30)

where

ϕ =
PIυ∗3

PIaυ∗3 − 2υ∗3υ
∗
2 − PIbυ∗2

,

ψ =
υ∗3 + 2bυ∗2
υ∗3 − 2bυ∗2

,
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and ki, i = 1, ..., 3 are constant design parameters that have to be tuned
to guarantee the stability of the linear system (3.17), as will be shown in
the next section.

The change of coordinates (3.21)-(3.23) is inverted as follows:

δυ1(x, t) =
ξ1(x, t) + ξ2(x, t)− 2aξ3(x, t)

2
, (3.31)

δυ2(x, t) =
ξ1(x, t)− ξ2(x, t)

2b
, (3.32)

δυ3(x, t) = ξ3(x, t). (3.33)

3.3.3 Stability analysis

Using Theorem 3.1 and Theorem 3.2 the system stability under the bound-
ary conditions (3.30) may be expressed as the following two conditions:

1. ∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


0 0

√
ϕλ1p1
|λ3|p3

0 0
√

ψλ2p2
|λ3|p3√

k1|λ3|p3
λ1p1

√
k2|λ3|p3
λ2p2

k3


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ < 1 (3.34)

2.  (µλ1 + 2σ11)p1e
−µx σ21p2e

µx + σ12p1e
−µx σ13p1e

−µx

σ21p2e
µx + σ12p1e

−µx (µ|λ2|+ 2σ22)p2e
µx σ23p2e

µx

σ13p1e
−µx σ23p2e

µx µλ3p3e
−µx


︸ ︷︷ ︸

Q

(3.35)

is positive definite.

Note that condition (i) is satisfied if and only if√
λmax((∆K∆)T (∆K∆)) < 1,

where λmax(·) denotes the maximum eigenvalue of its argument.

A sufficient condition for Q to be positive definite is that its principal
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minors be strictly positive. This fact results in the following inequalities:

µλ1 + 2σ11 > 0, (3.36)

µ|λ2|+ 2σ22 > 0, (3.37)

(µλ1 + 2σ11)(µ|λ2|+ 2σ22)p1p2 − (σ21p2e
µx + σ12p1e

−µx)2 > 0, (3.38)

µλ3p3e
−µx [(µλ1 + 2σ11)(µ|λ2|+ 2σ22)p1p2 − (σ21p2e

µx + σ12p1e
µx)2

]
−

σ23p2e
µx
[
(µλ1 + 2σ11)σ23p1p2 − (σ21p2e

µx + σ12p1e
−µx)σ13p1e

−µx]+

σ13p1e
−µx [(σ21p2e

µx + σ12p1e
−µx)σ23p2e

µx−
(µ|λ2|+ 2σ22)σ13p1p2] > 0, (3.39)

Conditions (3.36)-(3.37) are satisfied for any µ ≥ 0. Condition (3.38)
is satisfied for sufficiently small µ > 0 if the parameters p1, p2 are selected
such that σ12p1 = σ21p2, as shown in [52]. Indeed, the term (σ21p2e

−µx +
σ12p1e

µx)2 is maximum either at x = 0 or at x = L. For x = 0, we have

(µλ1 + 2σ11)(µ|λ2|+ 2σ22)p1p2 − (σ21p2 + σ12p1)2

= p1p2

(
µ2λ1|λ2|

)
+ 2µ (σ22λ1 + σ11|λ2|)− (σ22p2 − σ12p1)

2

= p1p2

(
µ2λ1|λ2|

)
+ 2µ (σ22λ1 + σ11|λ2|) > 0,

for any µ > 0. On the other hand, for x = L we have

(µλ1 + 2σ11)(µ|λ2|+ 2σ22)p1p2 − (σ21p2e
µL + σ32p3e

(µL)2

= p1p2

(
µ2λ1|λ2|

)
+ 2µ (σ22λ1 + σ11|λ2|)−(

σ22p2e
µL − σ12p1e

−µL)2 > 0,

for µ > 0 sufficiently small because the function

F (µ) ,
(
σ11p2e

−µL − σ22p3e
µL
)2

is exponential in µ.
Finally, inequality (3.39) is satisfied for a sufficiently large p3. It follows

that there exists α > 0 such that

V2 < −αV =⇒ dV

dt
= V1 + V2 ≤ −αV ∀ξ 6= 0. (3.40)

Hence, V is a Lyapunov function along the solutions of the linearized
slugging model and its solutions exponentially converge to 0 in L 2([0, L]; R3)-
norm.
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Remark 3.1. The Lyapunov function used in this section to show the sta-
bility of the linear system cannot be used to analyze the local stability of the
nonlinear case. To this aim, an augmented Lyapunov function must be used
to prove convergence in H 2-norm. This proof is much more complicated
than the linear case shown in this section. More detail about the nonlinear
case are given in [7, 52].

3.3.4 Design of the control law

In the previous section, we have seen that the system stability is guaranteed
if the feedback control law (3.28) holds. Therefore, in this section we shall
present how the explicit expression of the control law can be obtained using
the boundary condition (3.20).

We introduce the following notations:

δυ1(L) , δυ1(L, t), δυ1(0) , δυ1(0, t),

δυ2(L) , δυ2(L, t), δυ2(0) , δυ2(0, t),

δυ3(L) , δυ3(L, t), δυ3(0) , δυ3(0, t).

Using the definition of the characteristic coordinates (3.21)-(3.23) the
boundary condition (3.28) is rewritten as

δυ3(L)(a+k1a+k3)−δυ1(k1b−b)+δυ3(L)(1+k1)+k2(δu2(0)+aδυ3(0)−
bδυ1(0)) = 0. (3.41)

Then, by eliminating δυ3(L) between (3.20) and (3.41), and eliminating
δυ2(0) and δυ3(0) between (3.18), (3.19) and (3.41), we get the following
expression for the control law

u(t) = u∗ +Kpυ2
δυ2(L) +Kpυ1

δυ1(L) +Kp0δυ1(0), (3.42)

where

Kpυ2
=
k3 +Kυ3 + a+ k1a+ k1Kυ3

Kz (a+ k1a+ k3)
,

Kpυ1
= Kυ3

Kz(a+k1a+k3)

(
k1b− b−

Kυ1

Kυ3

(a+ k1a+ k3)

)
,

Kp0 =
Kυ3k2 (PI(aυ∗3/υ

∗
2 − 1)− b)

Kz (a+ k1a+ k3)
.

It must be noted that the feedback control law (3.42) needs measure-
ments of pressure at the outlet valve, the bottom pressure and total flow-rate
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Figure 3.1: Bottom and top pressure, and choke opening with the proposed
control law. At t = 3.3 h the control was switched on and at t = 15 h the
control was again switched off.

measurement through the outlet valve. For the simulations results shown
in Section 3.3.5, we consider that all these variables are being measured.
In some real cases this is not true. Therefore, the use of a state observer
together with the control law is probably the best option in these cases.

3.3.5 Simulation results

This section shows the simulation results obtained when using the proposed
controller to stabilize the quasilinear model (A.10). We consider a 2500
meter long vertical well with reservoir pressure Pr = 180 bar and separator
pressure Ps = 10 bar. Table A.1 gives a list of the parameters used for
the computations. The space was divided in N sections and the space
derivatives were written using a finite difference scheme. An ODE solver
was used to obtain the solution.

In Fig. 3.1 the results obtained with the control technique proposed in
this thesis are shown. The operating point was chosen to be Z∗ = 48%.
The steady-state values of υ∗2(0), υ∗2(L) and υ∗3(L), necessary for the control
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law, can be obtained by computing the steady-state model (A.10) in such
operating point. The controller gains were chosen to be k1 = −0.5, k2 = 2.3
and k3 = 300. These parameters were found after several simulations in
order to improve the control system performance. At t = 3.3 h the control
was switched on. It can be noted that the oscillations are suppressed and
the system remains in the desired operating point. At t = 15 h the control
was switched off and as expected, the system comes back to the oscillatory
regime.

3.4 Conclusions

In this chapter we studied the boundary stabilization problem in linear
hyperbolic PDE systems by using dissipative boundary conditions. We have
shown, by means of a Lyapunov function, that under certain considerations
in boundary conditions, the solution of the system decays exponentially to
the origin in the L 2-norm. These results were applied to the slug control
problem in oil facilities. Although the theoretical results guarantee stability
only for the linearized system, simulations have shown relatively promising
results when the control law is applied to the nonlinear system.



Chapter 4

Boundary control of a Rijke tube
using irrational transfer
functions

This chapter is concerned with boundary stabilization of thermoacoustic
oscillations in the Rijke tube. To study this problem we consider that the
mathematical model takes the form of two interconnected compartments.
Each compartment is described by the linearized Euler equations of gas
dynamics and the interaction between these compartments is given by the
heater model. The control input is applied on the left boundary condition
of the cold zone (see Appendix B). From this model we derive an irrational
transfer function to design a stabilizing boundary control in the frequency
domain. In particular, we derive necessary and sufficient conditions for the
input-output stability through the use of Nyquist-type test. Experimental
results show the effectiveness and real-life applicability of the method. The
chapter is organized as follows. Section 4.1 presents the characterization
of the transfer function. The closed loop system and its stability is studied
in Section 4.2. The experimental results are shown in Section 4.3. Finally,
the main conclusions are presented in Section 4.4.

4.1 Open-loop transfer function of the Rijke tube

In the following, we will compute a transfer function G(s) from the speaker
to the microphone pressure based on model (B.2)-(B.7). To derive this trans-
fer function, note that equations (B.2)-(B.3) represent the wave equation.
To see that, take both a time and space derivative in (B.3) and subtract
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the resulting expressions. One obtains

∂ttP̃i(t, xi) = c2∂xxP̃i(t, xi), i = 1, 2 (4.1)

where c =
√
γ Pρ is the speed of sound.

It is well known that the solution of (4.1) is given by the D’Alambert
formula [54]. Therefore, the acoustic pressure in the upstream propagates
according to

P̃1(t, x) = f
(
t− x

c

)
+ g

(
t+

x

c

)
, −xu < x < 0, (4.2)

and similarly to the downstream side

P̃2(t, x) = h
(
t− x

c

)
+ j

(
t+

x

c

)
, 0 < x < xd, (4.3)

where f , g, h, j are arbitrary function (not stated and unimportant for the
following developments) which satisfy the boundary and initial conditions.

Using (4.2)-(4.3) and (B.2), we obtain the velocity fluctuations at the
upstream and downstream part of the tube:

ṽ1(t, x) =
1

ρc

(
f
(
t− x

c

)
− g

(
t+

x

c

))
, −xu < x < 0, (4.4)

ṽ2(t, x) =
1

ρc

(
h
(
t− x

c

)
− j

(
t+

x

c

))
, 0 > x > xd. (4.5)

Considering x = 0 and substituting (4.2)-(4.5) into (B.4)-(B.5), and
applying the Laplace transform into these equations, we obtain

X

(
G (s)
H (s)

)
= Y

(
F (s)
J (s)

)
+ Zφ(s), (4.6)

where G , H , F and J are the Laplace transform of g, h, f and j, respec-
tively, and

X =

(
−1 1
1
γ

1
γ

)
, (4.7)

Y =

(
1 −1
1
γ

1
γ

)
, (4.8)

Z =

(
0
1

)
, φ(s) =

1
1

γPA

hv
τs+ 1

, (4.9)
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From the boundary conditions (B.7), we obtain that f(t) = −g
(
t− 2xuc

)
+

u(t− xu
c ) and j(t) = −h

(
t− 2xdc

)
. These reflections at tube ends are mod-

eled for ideal condition. A more realistic model should include acoustic
reflection losses at the boundary. Therefore, we introduce the constants
Ru, Rd ∈ (−1, 0) to account for acoustic reflection losses. It follows that
these boundary conditions are rewritten to

f(t) = Rug (t− τu) + u
(
t− τu

2

)
, (4.10)

j(t) = Rdh (t− τd) , (4.11)

where τu = 2xuc and τd = 2xdc .

Taking the Laplace transform of (4.10)-(4.11) and substituting them
into (4.6) we finally obtain(

−1−Rue−τus 1 +Rde
−τds

(1−Rue−τus)
γ (1 + γφ(s)) 1−Rde−τds

γ

)(
G (s)
H (s)

)
=(

e−
τu
2 s(

1+γφ(s)
γ

)
e−

τu
2 s

)
U (s), (4.12)

where U is the Laplace transform of u.

Notice that from (4.12) we obtain

H (s)

U (s)
= − 2e−

τu
2 s

γ det(S)
(1 + γφ(s)), (4.13)

where

S =

(
−1−Rue−τus 1 +Rde

−τds

(1−Rue−τus)
γ (1 + γφ(s)) 1−Rde−τds

γ

)
.

The open-loop transfer function required, G(s), is from the speaker to
the microphone pressure Pmic. This can be obtained from (4.13) and by
expressing Pmic in terms of the acoustic waves using (4.3):

G(s) =
Pmic(s)

U (s)
= −2e−( xu+xmic

c )s

γ det(S)
(1 +Rde

2
(
xmic−xd

c

)
s
)(1 + γφ(s)),

(4.14)

where xmic ∈ (0, xd) is the location of the microphone.
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Figure 4.1: Location of the poles of the open-loop transfer function (4.14).
They were calculated numerically by finding roots of (4.15). Note that there
is an unstable pole at 131 Hz on the imaginary axis, and infinite stable
poles that tend asymptotically towards (4.16).

4.1.1 Poles and zeros of the open-loop system

The poles of G(s) characterize the open-loop dynamic behavior of the
linearized system. They are given by the solutions of the following equation:

ψ(s) , γPA(τs+ 1)(1−Rde−τus)(1−Rde−τds)−
(1−Rue−τus)(γPA(τs+ 1) + γhv)(1 +Rde

−τds) = 0. (4.15)

In general, this equation has no explicit solution. Numerical resolution
for the values in Table B.1 leads to the poles depicted in Figure 4.1. As
can be seen, there is a pair of unstable complex conjugated poles at the
frequency 131 Hz on the imaginary axis, which corresponds to the frequency
of oscillation, and infinite poles on the left hand side of the complex plane.
The following proposition provides a closed solution of (4.15) to explain
the poles behavior for high frequency:

Proposition 4.1. When |s| � 0, the solutions of (4.15) tend asymptotically
towards

p̃±k =
log(RuRd)

τu + τd
± 2jπk

τu + τd
, (4.16)
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where k ∈ N, and the approximation error is at the first-order given by:

p±k ≈ p̃±k −
ψ(p̃±k)

ψ′(p̃±k)
. (4.17)

Proof. Equation (4.16) follows directly from a high frequency analysis of
(4.15).

Writing the Taylor expansion of ψ around p±k = p̃±k + p′±k + o(p′±k)
we get

ψ(p±k) = ψ(p̃±k) + ψ′(p̃k)p′±k + o(p′±k). (4.18)

Note that ψ(pk) = 0, and ψ′(p̃k) 6= 0. Therefore, equation (4.18) leads
to (4.17). This concludes the proof.

The zeros of (4.14) are the values of s such that G(s) is zero. In this
case, the zeros are given by

z±k =
log
(
− 1
Rd

)
2
(
xmic−xd

c

) ± jkπ(
xmic−xd

c

) , (4.19)

where k ∈ N.
As can be seen in (4.19), the zeros have real negative part and therefore

are in the left-hand side of complex plane. Furthermore, it can be seen
from this equation that the microphone location only affect the zeros of
the system. The poles remain unchanged independent of the microphone
position.

4.2 Closed-loop system

4.2.1 Proposed control law

As shown in Equation (B.8), the thermoacoustic oscillation in the Rijke
tube occurs when acoustic energy is greater than the loss. The gain and
loss of energy depend on the acoustic field. However, conditions can change
completely if the field in the tube is disturbed by a different sound source,
which in this work is produced by a loudspeaker. The inclusion of a sound
source changes the difference between energy gain and loss, which can
become larger or smaller than the unperturbed acoustic field.

Therefore, it is reasonable to consider the control law given by

u(t) = KcP̃ (t− τc, xmic), (4.20)
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where Kc and τc are design parameters. Note that with this control law
the loudspeaker reproduces an amplified and delayed pressure wave of the
tube.

4.2.2 Stability analysis

In this work, the following definition of stability is adopted.

Definition 4.1. If a system maps every input u ∈ L 2([0, ∞);C) to an
output y ∈ L 2([0, ∞);C) and

sup
u6=0

‖y‖L 2([0,∞))

‖u‖L 2([0,∞))

<∞,

the system is stable. A system is said to be unstable if it is not stable.

Remark 4.1. Stability of systems described by their transfer functions can
be checked by Theorem A.2 of [55]. In this case, a linear system is stable
if and only if its transfer function G belongs to H∞(C+; C).

With control law (4.20), the closed-loop transfer function is given by

Gcl(s) =
G(s)

1− C(s)G(s)
, (4.21)

where C(s) = Kce
−τcs.

For the stability result we will use the following necessary and sufficient
condition [56].

Theorem 4.1. The closed-loop system is stable if and only if

1. inf
Re(s)>0

|1− C(s)G(s)| > 0

2. C(pi) 6= 0, i = 1, . . . , n0, where pi are the poles of G in C+.

Condition 1 of Theorem 4.1 can be checked through the graphic Nyquist
criterium. In our case, the open-loop is non stricly proper, and the applica-
tion of the graphic Nyquist criterium is more delicate [56]. Condition 2 of
the previous theorem corresponds to a condition preventing an instability
due to the cancellation of an unstable pole of G by a zero of C.

Since the proposed control law (4.20) is not strictly proper, we have to
take into account the behavior of the Nyquist plot at infinity. We propose
below a way to circumvent this problem by analyzing the closed-loop poles
for high frequencies. First, we state a technical result that will be used in
the stability analysis.
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Lemma 4.1. Consider the neutral delay equation

1−
M∑
i=1

aie
−ris = 0, (4.22)

with the components r = (r1, r2, . . . , rM ) rationally independent1.
The solutions of (4.22) lie in the left of complex plane if and only if

M∑
i=1

|ai| < 1. (4.23)

Proof. See Theorem 2.2 and Corollary 2.4 of [57].

Consider that the system fulfills the following assumption

Assumption 4.1. The set

r = {xu + xd, cτc + xd + xmic, cτc + 3xd − xmic} ,

is rationally independent.

Then, we have the following result:

Proposition 4.2. Let τc, xmic > 0 such that

r = (xu + xd, cτd + xd + xmic, cτc + 3xd − xmic) ,

is rationally independent. Then, the following inequality is a necessary
condition of closed-loop stability:

|Kc|(1 + |Rd|) < 1−RdRu (4.24)

Proof. For |s| � 0, the closed-loop poles can be approximated as the
solution of

1−RuRde−(τu+τd)s −Kce
−
(
cτc+xd+xmic

c

)
s

−KcRde
−
(
cτc+3xd−xmic

c

)
s

= 0. (4.25)

Then, choosing τc, xmic > 0 such that

r = (xu + xd, cτd + xd + xmic, cτc + 3xd − xmic) ,

is rationally independent we can apply Lemma 4.1 to obtain the inequality
(4.24). This concludes the proof.

1We say that the real numbers a1, . . . , an are rationally independent if the only
n-tuple of integers k1, . . . , kn such that k1a1 + · · · + knan = 0 is the trivial solution in
which every ki, i = 1, . . . , n is zero.
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Using this result we can restrict the test of the Nyquist criterion to a
finite range of frequencies, as stated in the corollary bellow.

Corollary 4.1. If Proposition 4.2 is verified, then there exists s0 > 0 such
that condition 1 of Theorem 4.1 needs only be tested on a finite range
|s| < s0.

Proof. For sake of simplification in the following computations, define G̃(s)
as the approximated transfer-function of (4.14) for |s| � 0.

Note that if Proposition 4.2 holds, then there exists ε > 0 such that

|1− C(s)G̃(s)| > ε.

Moreover, for |s| ≥ s0 we have that

||C(s)G(s)| − |C(s)G̃(s)|| < ε.

It follows that,

|1− C(s)G(s)| ≥ ||1− C(s)G̃(s)| − |C(s)G(s)− C(s)G̃(s)|| > 0.

Therefore, there exists s0 such that |1−C(s)G(s)| > 0 when condition
(4.24) is satisfied.

The Nyquist stability criterion which accommodates infinite dimen-
sional system is stated in the next theorem [3].

Theorem 4.2. Let g be a function which is meromorphic on an open set
containing C+ and suppose that g has no poles or zeros on the imaginary
axis. Furthermore, assume that g has a non-zero limit at ∞ in C+, i.e.,
there exists a g(∞) ∈ C, g(∞) 6= 0 such that

lim
ρ→∞

sup
s∈C+,‖s‖>ρ

|g(s)− g(∞)| = 0.

Then g has at most finitely many poles and zeros in C+ and

1

2πj

∫ ∞
−∞

dg
ds (jω)

gjω
dω =

1

2π
lim
ω→∞

arg(g(−jω))− arg(g(jω)) = N0 − P0

where N0 and P0 are the number of zeros and poles of g, respectively, in
C+. Furthermore, N0 − P0 equals the number of times that g(jω), known
as the Nyquist contour, winds the origin as ω decreases from +∞ to −∞.

Proof. See Theorem A.1.14 of [3].
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In the next proposition we show the conditions that the Nyquist contour
must obey in this finite range of frequencies in order to guarantee the
stability of the closed-loop system.

Proposition 4.3. Let nu be the number of open-loop poles of (4.14) in C+.
Denote the Nyquist contour of

Ψ(s) , 1 +
2Kce

−( cτc+xu+xmic
c )s

(γ − 1) det(S)
(1 +Rde

2
(
xmic−xd

c

)
s
)×

(1 + γφ(s)) (4.26)

by ΓΨ(s). Then the transfer function Gcl is

1. Unstable if ΓΨ(s) does not encircles the origin nu times in the clock-
wise direction.

2. Stable if ΓΨ(s) encircles the origin nu times in the clockwise direction.

In the limiting case that ΓΨ(s) does not encircle but crosses −1, the
stability is undetermined.

Proof. First we have to show that Ψ(s) is meromorphic in C in order to
apply Theorem 4.2. Note that the exponential function is an entire function
and it is well-known that the composition of entire functions also results
in an entire function. Thus Ψ is expressed as the ratio of entire functions,
meaning that it is meromorphic. Further,

lim
m→∞

[
sup

{s∈C+||s|>m}
|Ψ(s)|

]
6= 0.

Next we show that Ψ(s) has finitely many poles in C+. Note by (4.26)
that the poles of Ψ are the same as the open-loop system. Therefore, by
Proposition 4.1, we now that the poles are asymptotic to (4.16), which
clearly have negative real part. Assume that the open-loop system is unsta-
ble (if the open-loop system is stable than there is nothing to do because
there are not poles in C+), then there exist poles in C+. We have to show
that there are finite poles in C+, say p±1, . . . , p±n0 . Indeed, since the
open-loop poles are asymptotic to (4.16), then there exists n0 ∈ N such
that ∀n > n0 Re(p±n) < 0. Therefore, there are p±1, . . . , p±n0

poles, with
n0 ∈ N, in C+. Define nu = 2n0. Then, nu is the counterclockwise number
that the Nyquist contour of Ψ encircles the origin. Likewise, the number
of zeros of Ψ - that is, the closed-loop system poles - in C+ is the number
of times the Nyquist contour of Ψ encircles the origin in the clockwise
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Figure 4.2: Nyquist plot of ΓΨ(s) showing two clockwise encirclements of
the origin as ω decreases from +∞ to −∞.

direction. This means that Gcl ∈ H∞(C+; C) if ΓΨ(s) encircles the origin

nu times in the clockwise direction and Gcl /∈ H∞(C+; C) if ΓΨ(s) does not
encircles the origin nu times in clockwise direction, making it a stable or
unstable transfer function according to Theorem 4.2.

In sum, the necessary and sufficient conditions developed in this section
can be checked by the algebraic equation (4.24) and by choosing τc and
xmic such that Assumption 4.1 and the Nyquist criterion are satisfied.

4.3 Results

In this section, we present results of real experiments in the Rijke tube
configuration described in Section B.1 with control law (4.20).

We choose Kc = 0.002 in order to satisfy inequality (4.24), and τc
was designed in order to ΓΨ(s) encircles the origin twice in the clockwise
direction since, as shown in Figure B.3(a), the system has a pair of complex
conjugated poles in C+. The Nyquist plot of ΓΨ(s) for τc = 0.001 is depicted
in Figure 4.2. There are two clockwise encirclements of the origin as ω
decreases from +∞ to −∞. Thus, the closed-loop system must be stable
and should be reasonably robust to plant’s uncertainties and changes.

Unfortunately, the value of τc must be chosen by trial and error, since
we have not developed analytical conditions for this control parameter.
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Figure 4.3 shows the sound pressure at the microphone location and
the control signal with the control law (4.20). At the beginning of the
experiment, no controller is active, and the system is in the limit cycle. At
t = 3.5 s the controller is actived. It can be noted that the oscillations are
suppressed and the system remains in the operating point. At t = 12 s
the control is deactivated and as expected, the system comes back to the
oscillatory regime.

Figure 4.3: Pressure fluctuations at the microphone location and control
signal as a function of time. At t = 3.5 s the controller is actived. At t = 12
s the control is deactivated.

4.4 Conclusions

We have addressed the issue of boundary stabilization of thermoacoustic
oscillations of the Rijke tube by a frequency domain approach. We have
used some properties of the system transfer function to derive necessary
and sufficient conditions for input-output stability of the boundary con-
trolled system. Experimental results for a Rijke tube prototype shows the
effectiveness of the proposed approach.





Chapter 5

In domain control of quasi-linear
hyperbolic systems

In this chapter we are concerned with tracking and disturbance rejection
problem in 1-D quasilinear hyperbolic systems, where the control variable
is modeled in the domain of the PDE system. The control methodology is
based on the sliding mode control strategy together with the method of
characteristics. This proposal allows us to characterize the sliding regimes
and their fundamental properties by a geometric approach. A basic material
about the main concepts of this methodology is presented in Section 5.2. An
approach to apply this control methodology in systems with relative degree
one is shown in Section 5.2.1. Also in that section, a smooth control law
is developed based on the concept of equivalent control, and experimental
tests on a solar collector field are presented to show the effectiveness of
the approach. In Section 5.2.2, we present this control methodology for
systems with relative degree two. In the end of this section, we apply the
obtained results to the pH control problem of a tubular photobioreactor.
Concluding remarks are discussed in Section 5.3.

5.1 Definitions and notations

We are interested in the following 1-D n×n quasilinear hyperbolic systems:

∂ξ

∂t
(x, t) + Λ(u(t))

∂ξ

∂x
(x, t) = f(ξ(x, t)),

y = p(ξ(x, t)), (5.1)
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where t ∈ [0, ∞) is the time variable, x ∈ [0, L] is the space variable, ξ :
[0, ∞)×[0, L]→ Rn is the vector of state variables, Λ : R→Mn,n(R) and f :
Rn → Rn. The control variable is u : [0,∞)→ R and the controlled variable
is denoted by y : Rn → R. We assume that the system relative degree1 is at
maximum two, i.e., the controlled variable must be differentiated at most
twice to obtain an explicit relation with the control variable. Moreover, we
assume that Λ is a diagonal matrix:

Λ = diag{λ1, λ2, . . . , λn},

and λ1 = u(t).
The initial condition of (5.1) is

ξ(x, 0) = ξ0(x), x ∈ [0, L], (5.2)

where ξ0 ∈ C1([0, L]; Rn), and the boundary conditions are

gi,0(ξ(t, 0)) = 0, t ∈ [0,+∞), (5.3)

gi,L(ξ(t, L)) = 0, t ∈ [0,+∞), (5.4)

i = 1, . . . , n,

where gi,0, gi,L : Y → R.
The existence and uniqueness of the solution of (5.1)-(5.4) can be proved

using the method of characteristics. Then, if ξ0(x) is a continuously dif-
ferentiable function of its arguments, one can show, using Theorem 2.2,
that the solutions are continuously differentiable with respect to their ar-
guments, i.e., ξ(x, t) ∈ C1([0, L]× [0, +∞);Rn). Moreover, since the i-th
equation of system (5.1) is an ordinary differential equation along the i-th
characteristic we can use the Carathéodory theorem for ordinary differen-
tial equation to guarantee existence and uniqueness of the solution even
when u is discontinuous [58].

In terms of characteristic equations, system (5.1) is given by

dξi
ds

(xi(x, t, s), τi(x, t, s)) = fi(ξ(xi(x, t, s), τi(x, t, s))),

dxi
ds

(xi(x, t, s), τi(x, t, s)) = λi(ξ(xi(x, t, s), u(τi(x, t, s)))),

dτi
ds

(xi(x, t, s), τi(x, t, s)) = 1, (i = 1, . . . , n) (5.5)

1A similar concept, called characteristic index, was introduced by Christofides and
Daoutidis [15]. However, in this thesis, the term relative degree is preferred over charac-
teristic index.
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or briefly

dzi
dt

= κi(ξ(xi(x, t, s), τi(x, t, s)), u(τi(x, t, s)), τi(x, t, s)), (5.6)

(i = 1, . . . , n), where

zi =

 ξi
xi
τi

 , κi =

 fi(ξ(xi(x, t, s), τi(x, t, s)))
λi(ξ(xi(x, t, s), u(τi(x, t, s))))

1


We recall that κi is the i-th characteristic vector field of (5.1).

5.2 Distributed sliding mode control for quasilin-

ear hyperbolic systems

Sliding mode control is a classical nonlinear control methodology charac-
terized by a commuted control action. The main idea of this methodology
is to design a surface in such a way that the system has some desired
performance. Once on the surface, the system trajectories are induced to
the desired operating point, i.e., a pseudo-equilibrium of the commuted
system. If this pseudo-equilibrium is stable, the system trajectories remain
there. A Lyapunov-like stability condition guarantees that the distance
to the surface decreases along all system trajectories and constrains the
trajectories to point toward the surface. The basic elements of this control
methodology for lumped parameter systems can be seen in [59]. In this sec-
tion, an approach for 1-D quasilinear hyperbolic systems, called distributed
sliding mode control (DSMC), is presented following the ideas of [21, 22,
24].

The following switching control law determines the control action of
system (5.1)-(5.4):

u =

{
u+(ξ(x, t), x, t) if h(ξ(x, t), x, t) > 0
u−(ξ(x, t), x, t) if h(ξ(x, t), x, t) < 0

(5.7)

where u+ > u− and h : Rn → R is the switching boundary function.
Under the switching control law (5.7), the characteristic equations (5.6),

for i = 1, have two characteristic curves generated by the characteristic
vector field κ1,u+ and κ1,u− , respectively. It is referred to κ1,u+ , when
u = u+ is the control input and similarly κ1,u− , when u = u−. The other
characteristic vector fields, κ2, . . . , κn, are not affected by changing the
control u from u+ to u−. Therefore, the characteristic curves associated
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with κ2, . . . , κn are not defined for both values of the binary switching
control law.

Definition 5.1. The condition h(ξ(x, t), x, t) = 0 defines an isolated smooth
manifold ξ(x, t) = ϕ(x, t), called sliding surface, and is defined as

Σ = {(ξ(x, t), x, t) ∈ Rn+2 : ξ(x, t) = ϕ(x, t)}. (5.8)

At the points where Σ is a hypersurface, it is assumed that h is a
smooth surface with locally nonzero gradient, except possibly on a set of
zero measure.

Basically, system (5.1)-(5.4) with control law (5.7) has three different
behaviors at the sliding surface: (i) crossing; (ii) attractive sliding; and (iii)
repulsive sliding. The main idea in sliding control systems is to perform
the following:

1. to define the desired operating point (a stable pseudo-equilibrium
point) in such a way that it is in the attractive sliding region;

2. to guarantee that the system trajectories reach the surface (in finite
time) from a defined local set of initial conditions.

If these objectives are achieved, then, once the system trajectories are
on this surface they slide toward the pseudo-equilibrium point and remain
there. In the next sections we describe a methodology to induce attractive
sliding regime for systems with relative degree one and two, respectively.

5.2.1 The case of 1-D quasilinear hyperbolic systems with
relative degree one

In this section, we will describe a methodology to induce attractive sliding
regime for 1-D hyperbolic systems that fulfill the following assumption:

Assumption 5.1. The system (5.1)-(5.4) has relative degree one, i.e., the
output y must be differentiated (in time) once to obtain an explicit re-
lation with the input u. Furthermore, we assume that h(ξ(x, t), x, t) =
h(ξ1(x, t), x, t).

Definition 5.2. An attractive sliding regime for systems with relative degree
one is said to locally exist on an open set Σas ⊂ Σ if the total derivative of
h satisfies

dh

dt
(ξ1(x, t), x, t) < 0, if h(ξ1(x, t), x, t) > 0,

dh

dt
(ξ1(x, t), x, t) > 0, if h(ξ1(x, t), x, t) < 0. (5.9)
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Note that the total derivative of h along the characteristic lines can be
computed by the Lie derivative of h with respect to the vector field κ1:

dh

dt
=

∂h

∂τ1
+
∂h

∂ξ1
f1 +

∂h

∂x1
u = Lκ1,uh,

where Lκ1,u
h denotes the Lie derivative of h with respect to the vector field

κ1 for a given control input u.
The next theorem, extracted from [24], exposes a relation between the

PDE system (5.1)-(5.4) characteristic equations (5.6) and the switching
control law (5.7).

Theorem 5.1. Suppose that system (5.1)-(5.4) satisfies Assumption 5.1.
Then, an attractive sliding regime locally exists for system (5.1)-(5.4) on
an open set Σas ⊂ Σ, if and only if the phase flows corresponding to the
controlled characteristic vector field exhibit a local sliding regime under the
influence of some switching law (5.7).

Proof. Suppose an attractive sliding regime locally exists for (5.1)-(5.4)
with control law (5.7), then the time derivative of h, evaluated on an open
neighborhood of Σ satisfy (5.9). The total time derivative can be computed
in terms of the directional derivative of h along the controlled characteristic
direction field κ1,u+ and κ1,u− . The directional derivative is evaluated on
points above and below the switching boundary function which lie in a
small vicinity of the sliding surface. Then,

• If h > 0:

dh

dt
=

∂h

∂τ1
+
∂h

∂ξ1
f1 +

∂h

∂x1
u+ = Lκ1,u+

h < 0.

• If h < 0:

dh

dt
=

∂h

∂τ1
+
∂h

∂ξ1
f1 +

∂h

∂x1
u− = Lκ1,u−

h > 0.

Hence the flows corresponding to the characteristic vector fields κ1,u+

and κ1,u− satisfy the conditions for the existence of an attractive sliding
regime on an open set Σas ⊂ Σ.

Sufficiency follows by assuming an attractive sliding mode exists for the
controlled characteristic system while hypothesizing that an attractive dis-
tributed sliding mode does not exist. By reversing the arguments presented
above, a contradiction is easily established.
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From now on, we can perform the analysis on the closed loop system
using the characteristic equations.

In [60] it was shown, by a Lyapunov argument, that condition (5.9)
guarantee reachability of the system trajectories to an open set Σas ⊂ Σ
in finite time. Basically, to ensure that the system trajectories enter in the
region of attractive sliding regime in finite time the time derivative of the

Lyapunov function V = 1
2

∫ L
0
h2dx must be such that dV/dt ≤ −µ(

√
V )α,

where µ > 0 and 0 < α ≤ 1. Then, by the comparison principle for first-
order differential inequalities [61] we obtain that 2

√
V ≤ V (0) − µt, ∀t.

Since
√
V ≥ 0, then

√
V must reach

√
V = 0 in finite time, which means

that V must reach V = 0 in finite time with upper bound V (0)/µ.
Under attractive sliding condition, the system trajectories are con-

strained in h = 0. In this case it is also assumed that dh/dt = Lκ1,uh = 0.
Let a solution to dh/dt = 0 exist. Then, we have the following definition:

Definition 5.3. For all states ξ located on an open set of Σ, the unique
control function, ueq, locally constraining the distributed trajectories on an
open set Σas ⊂ Σ, is known as the equivalent control. The resulting
dynamics, constrained to Σ, will be addressed as ideal sliding dynamics.

The flows generated by ξ under the influence of ueq locally adopt an
integral surface [24]. It follows that the gradient of h is orthogonal to the
controlled characteristic vector field κ1,ueq , i.e.,

Lκ1,ueq
h =

∂h

∂τ1
+
∂h

∂ξ1
f1 +

∂h

∂x1
ueq = 〈∇h, κ1,ueq 〉 = 0.

To see that ueq is well defined, we will prove in the next theorem that
the above equality locally defines ueq in a unique way. Moreover, it will be
established that the equivalent control is necessarily locally intermediate
among the extreme feedback control laws u+ and u−.

Theorem 5.2. Suppose a sliding regime locally exists for system (5.1)-(5.4),
with control law (5.7), on Σ. Then, there exists a unique smooth feedback
control law u = ueq such that the characteristic direction field of (5.1) con-
trolled by ueq locally adopts as an integral surface the graph of the function
ξ(x, t) = ϕ(x, t). Moreover, locally on Σ:

u− < ueq < u+,

Proof. The proof amounts to demonstrating the existence of a smooth
equivalent control for the corresponding attractive sliding regime of the
characteristic system. Indeed, since the local invariance of h = 0 necessarily
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requires dh/dt = 0, one has Lκ1,u
h = 0. On the other hand, the existence

of a local attractive sliding regime on Σ implies, necessarily, that locally on
Σ: ∂Lκh/∂u 6= 0, i.e., Lκ1,u

h = 0 has, according to the implicit function
theorem, a unique solution u = ueq. Hence, if an attractive sliding regime
exists, the equivalent control locally exists and is uniquely defined.

Suppose now that an attractive sliding regime locally exists on Σ for
the switching feedback control law (5.7). Then, locally on Σ, the following
three relations hold:

Lκ1,u+
h < 0, (5.10)

Lκ1,ueq
h = 0, (5.11)

Lκ1,u−
h > 0. (5.12)

Subtracting (5.11) from (5.10) and (5.12) from (5.11) we obtain

Lκ1,u+
h− Lκ,ueqh < 0,

Lκ1,ueq
h− Lκ1,u−

h < 0.

From the mean value theorem, there exists smooth functions u+
0 and

u−0 such that

Lκ,u+h− Lκ,ueqh =

〈∇h, κ1,u+ − κ1,ueq 〉 = (u+ − ueq)〈∇h, ∂κ1,u+
0
/∂u〉 < 0,

Lκ,ueqh− Lκ,u−h =

〈∇h, κ1,ueq − κ1,u−〉 = (ueq − u−)〈∇h, ∂κ1,u−0
/∂u〉 > 0,

where u+
0 and u−0 , respectively, satisfy ueq < u+

0 < u+ and u− < u−0 < ueq,
i.e., locally on Σ we have u− < ueq < u+.

Remark 5.1. The existence of u+ < ueq < u− is a necessary and sufficient
condition for the existence of attractive sliding regimes.

Development of a smooth equivalent control law

It is well known that the switching control law (5.7) causes oscillations in
the controlled variables and infinitely fast control actions are impossible
to be applied in several systems with mechanical actuators. A possible
solution to guarantee the reachability of the system to the sliding surface
and, at the same time, to reduce the chattering problem is to design a
continuous control law as

u = ueq + uN , (5.13)
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where uN is the control action designed for the reaching phase during which
the system trajectories starting off the sliding surface moves toward it, and
ueq is the control component that acts when the system is on the attractive
region of the sliding surface. In what follows, a methodology, based on a
Lyapunov function, to obtain such control law is described.

Consider the following Lyapunov function

V =
1

2

∫ L

0

(h(ξ1(x, t), x, t))
2
dx.

If dV/dt is negative definite, then the system trajectories will decrease
until they reach the sliding surface. Evaluating such operation results in

dV

dt
=

∫ L

0

h
dh

dt
dx =

∫ L

0

h (Lκ1
h) dx.

Note that if we take Lκ1
h = −λh, then dV/dt < 0, for any λ > 0. In

fact, the implicit function theorem guarantees that Lκ1
h+ λh = 0 can be

solved for u, since ∂(Lκ1h+λh)/∂u 6= 0, in order to get dV/dt < 0. By the
comparison principle for first-order differential inequalities, this implies that
V (t) ≤ V (0)e−λt. Therefore, the system’s trajectories decrease towards the
sliding surface as t→∞ given any initial condition.

The explicit expression of (5.13), after some algebraic manipulations, is
given by

u = −
∂h
∂ξ1

f1(ξ(x, t)) + ∂h
∂t (ξ1(x, t)) + λh(ξ1(x, t))

∂h
∂x (ξ1(x, t))

. (5.14)

Note that (5.14) is valid if and only if ∂h/∂x 6= 0. With this result, we
have proved the following theorem:

Theorem 5.3. Consider the system (5.1) with initial condition (5.2) and
boundary conditions (5.4) and such that Assumption 5.1 is satisfied. Then,
the control law (5.14), with λ > 0 enforces the system trajectories of (5.1)-
(5.4) to the sliding surface h = 0.

Application to the solar power plant control problem

The solar collector field used to test the control methodology is located
at the CIESOL (Centro de Investigación de la Energia Solar, in Spanish)
building, a Solar Energy Research Center in the University of Almeŕıa -
Spain. A brief description of the process is given in Appendix C.

The control objective in a distributed collector field is to maintain
the temperature of the field at a desired level. The reference value is set
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according to the plant operation mode. The main disturbances are the inlet
temperature variation, the ambient temperature and changes of the solar
irradiance. The controlled variable is the mean outlet temperature of the
collector loops and the control variable is the fluid velocity/flow by a pump.
The flow range is 2 to 12 m3/h.

Since the objective in solar thermal plants is to maintain the tempera-
ture at a desired reference value, we consider the following sliding surface:

h = Tf (x, t)− Tf,ref (x, t) +
1

Ti

∫ t

0

〈Tf (x, t)− Tf,ref (x, t)〉dt = 0, (5.15)

where the first term in the right hand side denotes the error between the
measured temperature, Tf , and the set-point profile, Tf,ref . The second
term corresponds to the integral of this error and Ti is the integral time
constant, and 〈·〉 is the mean value of its argument. We assume that the
set-point profile is given by

Tf,ref (x, t) = Tin(t) + δ(x)(T ∗out(t)− Tin(t)), (5.16)

where Tin(t) = Tf (0, t) is the inlet fluid temperature, T ∗out(t) is the desired
outlet temperature at Tf (L, t), and δ(x) is a spatial dependent function,
where δ(0) = 0 and δ(L) = 1, and when x ∈ (0, L) this function must be
designed in such a way that (5.16) behaves as the stationary solution of
(C.2).

Remark 5.2. It is important to emphasize that to achieve the reference error
equal zero on the sliding surface (5.15), it is necessary and sufficient that
the dynamics of the error is stable. This can be guaranteed by adequately
choosing the parameter Ti.

For this system we can not apply directly the switching control law (5.7).
Therefore, we have to develop a continuous control law. In what follows
we describe the development of such control law based on the approach
described in Section 5.2.1.

Using the method of characteristics we obtain the following set of equa-
tions that generate the vector field κ1:

dTf
ds

(x1(x, t, s), τ1(x, t, s)) =
Diπht
ρfCfAf

(Tm(x1(x, t, s), τ1(x, t, s))−

Tf (x1(x, t, s), τ1(x, t, s))),

dx1

ds
(τ1(x, t, s)) =

u(τ1(x, t, s))

Af
,

dτ1
ds

= 1, (5.17)



80 Chapter 5. In domain control of quasi-linear hyperbolic systems

where u , ql.
Consider the rate of change of h over the solution of (5.17) given by the

Lie derivative:

Lκ1
h(x1(x, t, s), τ1(x, t, s)) =

[
Diπht
ρfCfAf

(Tm(x1(x, t, s), τ1(x, t, s))−

Tf (x1(x, t, s), τ1(x, t, s))]
∂h

∂Tf
(x1(x, t, s), τ1(x, t, s)) +

u(τ1(x, t, s))

Af
×

∂h

∂x
(x1(x, t, s), τ1(x, t, s)) +

∂h

∂t
(x1(x, t, s), τ1(x, t, s)), (5.18)

Substituting (5.15) and (5.18) in (5.14), the smooth equivalent control
law is obtained

u(t) =
Af

∂Tf,ref
∂x

[
Diπht (Tm(x, t)− Tf (x, t)) +

(
λ+

1

Ti

)
(Tf (x, t)

−Tf,ref (x, t)) +
λ

Ti

∫ t

0

〈Tf (x, σ)− Tf,ref (x, σ)〉dσ
]
, (5.19)

where the control parameters are Ti and λ. To eliminate the necessity
for the slope of the temperature set-point profile along the solar collector
field, equation (5.19) is averaged with respect to space. This results in the
following expression

u(t) =
Af

Tf,ref |x=L
x=0

[
Diπht〈Tm(t)− Tf (t)〉+

(
λ+

1

Ti

)
〈Tf (t)− Tf,ref (t)〉+

µ

τi

∫ t

0

〈Tf (σ)− Tf,ref (σ)〉dσ
]
, (5.20)

Remark 5.3. In [62] it was shown that implementing a control law based on
the average tracking error as (5.20) guarantee the point-wise convergence
of the distributed tracking error T (x, t)− Tref (x, t).

In addition, the control law (5.20) contains an open-loop observer to
estimate the collector plate temperature, since there is no measurement
of such variable in the real plant. The observer is given by the real-time
numerical integration of the model (C.1)-(C.2) to estimate the temperature
of the fluid and collector plate, and use them in the control law (5.20).
Moreover, we use the real measurement of the inlet temperature in boundary
condition (C.3).

The control parameters were chosen to be λ = 50 and Ti = 5.7 min.
These values were chosen by simulating control law (5.20) in model (C.1)-
(C.3) under real data disturbances and analyzing the controller response
for set-point tracking and disturbance rejection.
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Figure 5.1 shows the experimental results with the DSMC controller in a
clear day. At the beginning of the experiment the gas heater was operating
on automatic mode by an on-off controller, causing the oscillations in the
inlet temperature, as can be seen in the bottom graph of Figure 5.1. At
about t = 11 h the gas heater coupled to the installation was set on manual
mode to eliminate the oscillations in the inlet temperature. It is the reason
of the oscillations in the control signal during this time period. Notice that,
the solar irradiance is smooth along the experiment. As can be seen the
output response shows a small overshoot of less than 1 oC and the settling
time is of around 11 minutes for a set-point change of 3 oC. Although the
solar irradiance is smooth, the inlet temperature changes inside a wide
range, from 60 oC to 67 oC causing strong disturbances in the system. This
fact produces that the volumetric flow rates during the test cover almost
its whole range from 4 to 10 m3/h.
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Figure 5.1: Experimental result of the solar power plant with DSMC con-
troller in a clear day. Results of October 3rd, 2013.

Another experiment is shown in Figure 5.2 where the controller per-
formance against solar irradiance disturbances can be appreciated. In this
scenario, three different set-points were imposed. The inlet temperature has
small changes along the test. The system response is smooth and a small
overshoot of less than 1 ◦C can be seen. At around t = 12.70 h a small
cloud leads to a fast decrease in the solar irradiance. The controller does not
respond because the inlet temperature was increasing and it compensates
the impact of the solar irradiance disturbance. After the disturbance it can
be noted that the controller quickly reestablishes the set-point tracking.
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Figure 5.2: Experimental result of the solar power plant with DSMC con-
troller in a cloudy day. Results of October 2nd, 2013.

5.2.2 The case of 1-D quasilinear hyperbolic systems with
relative degree two

In this section we are going to develop an sliding mode control methodology
for systems that fulfill the following assumption:

Assumption 5.2. The system (5.1)-(5.4) has relative degree two, i.e., the
output y must be differentiated (in time) twice to obtain an explicit relation
with the input u. Furthermore, we assume that h(ξ(x, t)) = h(ξ2(x, t)).

It is easy to see that the attractive sliding condition (5.9) can not be
applied in systems that satisfy the Assumption 5.2. Indeed, if the system
relative degree is two, then ∂Lκ2h/∂u = 0. Consequently, the equivalent
control function ueq does not exist and, according to Remark 5.1, attractive
sliding regime can not be induced by the results of the previous section.
To deal with this problem, a second-order sliding manifold is developed in
this section in order to create a local sliding motion for system (5.1)-(5.4).

Definition 5.4. An attractive sliding regime for systems with relative degree
two is said to locally exist on an open set Σas ⊂ Σ if the total derivative of
h satisfies

d2h

dt2
(ξ2(x, t), x, t) < 0, if h(ξ2(x, t), x, t) > 0,

d2h

dt2
(ξ2(x, t), x, t) > 0, if h(ξ2(x, t), x, t) < 0 (5.21)
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These attractive sliding conditions can be computed by the Lie deriva-
tive of Lκ2h with respect to the vector field κ1:

d2h

dt2
=

∂

∂τ1
(Lκ2h) +

∂

∂ξ1
(Lκ2h)f1 +

∂

∂x1
(Lκ2h)u = Lκ1,u(Lκ2h),

where Lκ1,u(Lκ2
h) represents the Lie derivative of Lκ2

h with respect to
the vector field κ1,u for a given control input u.

Theorem 5.1 can be easily adapted for the case (5.21). This result is
stated below.

Theorem 5.4. Consider the system (5.1)-(5.4) such that Assumption 5.2 is
satisfied. Then, an attractive sliding regime locally exists for system (5.1)-
(5.4) on an open set Σas ⊂ Σ, if and only if the phase flows corresponding
to the controlled characteristic vector field exhibit a local sliding regime
under the influence of the switching law (5.7).

In sum, the idea of this methodology is to induce the vector field κ1,
by means of the feedback switching controller (5.7), to the hypersurface
Lκ2h = 0, which is contained in h = 0. In this way, it becomes possible
to indirectly induce the vector field κ2 to h = 0, since the vector fields κ1

and κ2 are coupled. Furthermore, with a similar argument used in Section
5.2.1 we can show that the attractive sliding condition (5.21) guarantees
the reachability of the systems trajectories into an open set Σas ⊂ Σ in
finite time.

Note that the invariance condition h = 0 implies that dh/dt = Lκ1h = 0
and also d2h/dt2 = Lκ1,u(Lκ2

h) = 0. According to Definition 5.3, the
control function u = ueq such that Lκ1,u(Lκ2

h) = 0 is called equivalent
control. Furthermore, the gradient of Lκ1

h is orthogonal to the controlled
vector field κ2,ueq :

Lκ,ueq (Lκ1
h) =

∂

∂τ1
(Lκ2

h) +
∂

∂ξ1
(Lκ2

h)f1 +
∂

∂x1
(Lκ2

h)u =

〈∇Lκ2
h, κ1,ueq 〉 = 0, (5.22)

where κ1,ueq stands for the ideal sliding dynamics induced by the interac-
tions of the two vector field κ1,u− and κ1,u+ . Note that this orthogonality
condition also implies that the gradient of h is orthogonal to the vector
field κ2.

The equivalent control is given by the solution of (5.22) for ueq, which
is derived on the nominal system dynamics, and is effective only once the
attractive sliding region is reached. Moreover, using the same argument of
Theorem 5.2 we can show that ueq is well defined and locally intermediate
among the extreme feedback control laws u+ and u−.
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Development of a smooth equivalent control law

In this section we are concerned in developing a continuous control law of
the form

u = ueq + uN ,

in order to avoid the chattering problem. To do that, consider the following
Lyapunov function

V =
1

2

∫ L

0

(
dh

dt
(ξ2(x, t), x, t) + λ1h(ξ2(x, t), x, t)

)2

dx,

where λ1 > 0.
The time derivative of this Lyapunov function is

dV

dt
=

∫ L

0

(
dh

dt
+ λ1h

)(
d

dt

(
dh

dt
+ λ1h

))
dx =∫ L

0

(Lκ2h+ λ1h)(Lκ1,u(Lκ2h+ λ1h))dx. (5.23)

Notice that if (Lκ1,u
(Lκ2

h + λ1h)) = −λ2(Lκ2
h + λ1h)), with λ2 > 0,

then equation (5.23) is negative definite. Since ∂(Lκ2,u
(Lκ1

h + λ1h)) +
λ2(Lκ1

h + λ1h))/∂u 6= 0, the implicit function theorem guarantees the
existence of u such that

(Lκ2,u(Lκ1h+ λ1h)) + λ2(Lκ1h+ λ1h)) = 0. (5.24)

Then, by the comparison principle for first-order differential equations
we have that V (t) ≤ V (0)e−λ2t, i.e., the system’s trajectories decrease
exponentially to the sliding surface given any initial condition. With this
result we have the following theorem:

Theorem 5.5. Consider the system (5.1) with initial condition (5.2) and
boundary conditions (5.4) and such that Assumption 5.2 is satisfied. Then,
the control law obtained as the solution of (5.24), with λ1, λ2 > 0 enforces
the system trajectories of (5.1)-(5.4) to the sliding surface h = 0.

Application to the tubular photobioreactor control problem

The tubular photobioreactor used in this thesis to test the automatic control
strategy is located at the Palmerillas Experimental Station, property of
CAJAMAR foundation (Almeŕıa, Spain). A brief description of the system
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is given in Appendix D. The pH control problem in tubular photobioreactors
deals with keeping the outlet pH of the external loop at a desired reference
value in spite of disturbances. For this microalga specie, the optimal pH
reference value is 8 [63].

The pH behavior in a microalgal culture is mainly influenced by two
phenomena. On one hand, the intake of CO2 as nutrient causes the forma-
tion of carbonic acid, leading to a decrease in the pH of the culture. On the
other hand, when the microalgae perform the photosynthesis they consume
CO2 and generate O2, causing an increase in the pH. The provided CO2 is
transferred to the culture medium as a function of mass transfer coefficient
in the system. Remaining fractions of injected CO2 produce an oscillatory
behavior in the measured pH, because of the continuous recirculation of
the culture, until its total elimination.

The main system disturbances are the medium injected to perform
the biomass harvesting, which introduces total inorganic carbon to the
culture, and thus decreasing the pH value, and solar irradiance changes,
caused by the solar cycle and presence of clouds, producing changes in the
rate of photosynthesis and thus in the rise of pH. The control variable
is the CO2 flow/velocity provided by a valve, located at the beginning
of the loop (see Figure D.1), which flow range is 0 to 5 L/min. In this
work, a control design based on controlling the total inorganic carbon is
proposed. It must be stressed that this is not the only way to control this
process. However, using the total inorganic carbon as controlled variable
reduces the complexity of the calculus involved on the control law design
if compared to using directly the pH variable for control design, due to the
model equations.

Since the total inorganic carbon, [CT ], is the controlled variable and
the gas velocity/flow, Vg, is the control variable, then the system’s relative
degree is two. Therefore, the approach developed in Section 5.2.2 will be
used to solve this control problem. Moreover, the continuous control law
must be used to avoid the chattering problem.

Using the method of characteristics in (D.5) we obtain the following set
of equations that generate the vector field κ1:

[CT ]

ds
(x1(x, t, s), τ1(x, t, s)) =

PCO2
Cb

MCO2

+K
lal,CO2

([CO∗2 ]− [CO2])

dx1

ds
(x1(x, t, s), τ1(x, t, s)) = Vl,

dτ1
ds

= 1. (5.25)

And applying the method of characteristics in (D.6) we obtain the set
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of equations that generates the vector field κ2:

dyCO2

ds
(x2(x, t, s), τ2(x, t, s)) = −Vmol

ε
K
lal,CO2

([CO∗2 ]− [CO2])

dx2

ds
((τ2(x, t, s)) = u,

dτ2
ds

= 1, (5.26)

where u , Vg.

The sliding surface is chosen to be

h([CT ], x, t) = ([CT ](x, t)− [CT ]ref (x, t))+

1

Ti

∫ t

0

〈[CT ](x, σ)− [CT ]ref (x, σ)〉dσ, (5.27)

where Ti is the time constant of the integral term, [CT ]ref (x, t) is the total
inorganic carbon reference profile and 〈·〉 is the mean value of its arguments.
We consider that the reference profile [CT ]ref (x, t) is calculated as

[CT ]ref (x, t) = [CT ](0, t) + δ(x)([CT ]ref (L, t)− [CT ](0, t)), (5.28)

where δ(x) = aebx is a spatial dependent function valid for x ∈ [0, L], where
a = 0.039 and b = −0.014. The [CT ](0, t) value is obtained directly from
the state observer (we will comment on the state observer in the following
paragraphs). Equation (5.28) is used to compute the set-point profile in the
DSMC control law. This expression was obtained by fitting the steady-state
numerical solution of (D.5) over the photobioreactor operating point.

The control law is based on equation

(Lκ2,u
+ λ2)(Lκ1

h+ λ1h) = 0,

which must be solved for u. It uses the two sets of characteristic vector
fields to define the equivalent sliding dynamics. Evaluating such equation,
it is obtained

(Lκ2,u
+ λ2)(Lκ1

h+ λ1h))(Lκ1
h+ λ1h) =

∂2h

∂t2
+ Vlu

∂2h

∂x2

+ (Vl + u)
∂2h

∂t∂x
+ λ̃1

(
∂h

∂t
+ u

∂h

∂x

)
+ λ̃2

(
∂h

∂t
+ Vl

∂h

∂x

)
+ λ̃1λ̃2h = 0,

(5.29)
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where λ̃1 = 1
4λ1 and λ̃2 = 1

3λ2. Substituting h into (5.29) yields

∂2[CT ]

∂t2
+ (u+ Vl)

∂2[CT ]

∂t∂x
+ uVl

∂2[CT ]

∂x2
− uVl

∂2[CT ]ref
∂x2

+
1

Ti

∂[CT ]

∂t

+ u

(
∂[CT ]

∂x
− ∂[CT ]ref

∂x

)
+ λ̃1

[
∂[CT ]

∂t
+

1

Ti
([CT ]− [CT ]ref )+

u

(
∂[CT ]

∂x
− ∂[CT ]ref

∂x

)]
+ λ̃2

[
∂[CT ]

∂t
+

1

Ti
([CT ]− [CT ]ref )

+Vl

(
∂[CT ]

∂x
− ∂[CT ]ref

∂x

)]
+ λ̃1λ̃2

[
[CT ]− [CT ]ref

+
1

Ti

∫ t

0

〈[CT ]− [CT ]ref 〉dt
]

= 0. (5.30)

Notice that the three first terms in (5.30) can be expressed by the Lie
derivative of [CT ] with respect to the two characteristic fields, i.e.,

Lκ2
(Lκ1

[CT ]) =
∂2[CT ]

∂t2
+ VgVl

∂2[CT ]

∂x2
+ (Vg + Vl)

∂2[CT ]

∂t∂x
=

K
lal,CO2

[
∂[CO2]

∂t
+ Vg

∂[CO2]

∂x
+
Vmol
ε

(1− ε)K
lal,CO2

HCO2
PT ([CO∗2 ]

− [CO2])

]
− PCO2

MCO2

(
Vg
∂Cb
∂x

+
∂Cb
∂t

)
. (5.31)

Substituting (5.31) in (5.30) the following control law is obtained

u =

{
K
lal,CO2

[
HCO2PT

Vmol
ε

(1− ε)K
lal,CO2([CO∗2 ]− [CO2]) + β2

]
+ λ̃2

[
PCO2

Cb
MCO2

+K
lal,CO2

([CO∗2 ]− [CO2])− Vl
∂[CT ]ref

∂x

]
+

(
λ̃1λ̃2 +

λ̃1 + λ̃2

Ti

)
([CT ]− [CT ]ref ) + λ̃1β1 −

PCO2

MCO2

β3

+
λ̃1λ̃2

Ti

∫ t

0

〈[CT ]− [CT ]ref 〉dt+
1

Ti

∂[CT ]

∂x

}
/

{
PCO2

MCO2

∂Cb
∂x

+Vl
∂2[CT ]ref

∂x2
−Ka,CO2

∂[CO2]

∂x
− λ̃1

[
∂[CT ]

∂x
− ∂[CT ]ref

∂x

]}
, (5.32)
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where

β1 = −Vl
∂[CT ]

∂x
+
PCO2

Cb
MCO2

+K
lal,CO2

([CO∗2 ]− [CO2]),

β2 =
β1

P2 − [CO2]P1P3
,

β3 = −Vl
∂Cb
∂x

+ PO2CbYp/x,

P1 =
K1

[H+]2
+

2K1K2

[H+]3
,

P2 = 1 +
K1

[H+]
+
K1K2

[H+]2
,

P3 =

K1

[H+] + 2K1K2

[H+]2

1 + Kw
[H+]2 + K1[CO2]

[H+]2 + 4 2K1K2

[H+]3

.

To avoid the requirement of setting the slope of the total inorganic
carbon profile set-point along the photobioreactor tube, equation (5.32) is
averaged with respect to space. This results in the following final control
law

u =

{
K
lal,CO2

[
HCO2PT

Vmol
ε

(1− ε)K
lal,CO2〈[CO∗2 ]−

[CO2]〉+ 〈β2〉
]

+ λ̃2

[
PCO2〈Cb〉
MCO2

+K
lal,CO2

〈[CO∗2 ]− [CO2]〉−

Vl [CT ]ref |L0
]

+

(
λ̃1λ̃2 +

λ̃1 + λ̃2

Ti

)
〈[CT ]− [CT ]ref 〉+ λ̃1〈β1〉

+
λ̃1λ̃2

Ti

∫ t

0

〈[CT ]− [CT ]ref 〉dt−
PCO2

MCO2

〈β3〉+
1

Ti
[CT ]|L0

}
/{

PCO2

MCO2

Cb|L0 + Vl
∂[CT ]ref

∂x

∣∣∣∣L
0

−Ka,CO2
[CO2]|L0

−λ̃1 ([CT ]− [CT ]ref )|L0
}
, (5.33)

It is noteworthy that, for implementation purposes, the derivative terms
of the control law (5.33) were discretized by a backward finite difference
scheme. Moreover, the implementation of the control law (5.33) contains
an state observer to estimate the total inorganic carbon and the other
variables present in the control law that are not measured in the real plant.



5.2 Distributed sliding mode control for quasilinear hyperbolic systems 89

This observer is given by (D.22) and (D.30). The initial condition of these
equations were obtained from the real plant. Moreover, these equations
were solved by the method of lines using a backward finite difference ap-
proximation. To ensure stability and to impose limits in the computational
cost, the Courant-Friedricks-Lewy condition was used. Since this model
was validated with real photobioreactor data with a discrepancy of around
1.2% between the values of the model states and the real system states [40,
64], no correction mechanism between the estimated state values and the
real system states was used.

In addition to the DSMC controller, an outer feedback loop with integral
action is used to calculate the total inorganic carbon concentration set-point
required to maintain the system pH in its optimal value. The outer feedback
loop is a PI controller with the following structure

[CT ]ref (L, t) = kp

(
∆pH(t) +

1

Ti,pH

∫ t

0

∆pH(τ)dτ

)
, (5.34)

where ∆pH = pHref (t) − pH(t) and pHref is the desired pH reference.
The pH reference is kept in its optimal value during the experiments to
guarantee maximal photosynthesis rate, i.e., pHref (t) = 8. A block diagram
of the entire control system is shown in Figure 5.3.

Photobioreactor 

Model

Plant
DSMC

Controller

Compute

set-point

pro!le

PI controller
V

g
(t)e(x,t)[C

T
]

ref
(x,t)[C

T
]

ref
(L,t)pH

ref
(t)  ∆pH(t)

I(t)

+
-

+
-

[C
T
](x,t)

pH(t)

pH(t)[O
2
](t) I(t)

Figure 5.3: Block diagram of control structure.

For a constant set-point [CT ]ref (L, t) (calculated by the PI controller),
the set-point profile [CT ]ref (x, t) is obtained from (5.34), which is a steady
state solution of the total inorganic carbon. This set-point profile is modified
to obtain a perfect match between the desired pHref and the pH of the
plant.

The design of the PI controller of the outer feedback loop was based
on the AMIGO tuning rule [65]. This tuning rule methodology is based
on a first-order transfer function plus dead time of the system. Thus, the
reaction curve method based on an open-loop test [65] was used to calculate
such model. In this way, during the night period of the day, where the solar
irradiance does not affect the system, a step change at the total inorganic
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carbon reference was applied to capture the dynamics between the total
inorganic carbon and the pH, as shown in Figure 5.4. For this experiment
the inner DSMC-photobioreactor closed-loop system was considered.
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Figure 5.4: Time-response dynamics of the total inorganic carbon, the CO2

injection, and the pH when a step change at the total inorganic carbon
reference was applied

As can be observed in Figure 5.4, the increase in the total inorganic
carbon produces a decrease in the pH, observing a time delay of 390 s. The
evolution of the pH response is governed by two main dynamics [66], one
second-order oscillatory term (natural frequency ωn = 0.0140 rad/s and
relative damping factor ξ = 0.0420) and one overdamped dynamics (with
time constant 450 s). The fraction of the remaining injected CO2 is recircu-
lated producing the oscillatory behavior in the measured pH. However, to
design the PI controller only the overdamped dynamic is considered. Then,
the following first-order model with dead time, relating the pH output to
the total inorganic carbon input, is obtained

G(s) =
−1.59

450s+ 1
e−390s, (5.35)

where s is the Laplace variable. The resulting PI parameters, using the
AMIGO tuning rule are kp = −0.1778 (m3 L)/(mol min) and Ti,pH =

547.9434 s. For the DSMC controller, we chose λ̃1 = 128, λ̃2 = 126 and
Ti = 600 s. These values were find in simulation by a trial and error
procedure in order to improve the closed-loop performance.

In Figure 5.5 the response of the sliding mode controller on July 1st,
2014 is shown. The experiment lasted around 12:30 h. Between 9:00 and
11:00 the harvesting of the culture was performed, where fresh medium is
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Figure 5.5: Experimental result of the tubular photobioreactor with DSMC
controller. Results of July 1st, 2014.

injected in the photobioreactor. The controller responds by decreasing the
carbon dioxide injection. It can be observed in the bottom graphic of Figure
5.5 that the total inorganic carbon remains constant along the day in such
a way that the pH of the photobioreactor tracks the reference. Smooth
changes in irradiance are about 100 W/m2 and the controller compensates
it in such a way that no tracking errors (more than ±0.1) were found.
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Figure 5.6: Experimental result of the tubular photobioreactor with DSMC
controller. Results of July 3rd, 2014.

Another experiment, performed on July 3rd, 2014 is shown in Figure
5.6. The harvesting operation was performed between 9:00 and 11:00 h.
The controller was regulating the dioxide carbon flow correctly during the
whole test. In spite of the disturbances, the system response is smooth
and the tracking error was less than ± 0.1 for the pH. This is a promising
result, taking into account the disturbances affecting the plant and the
uncertainties present in the system model.

5.3 Conclusions

In this chapter we describe the development of a sliding mode control
methodology for the tracking and disturbance rejection problem in systems
modeled by 1-D quasilinear hyperbolic systems with in domain control.
The central idea of the control approach is the combination of the method
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of characteristics and sliding mode control. The method of characteristics
is employed for a general first-order hyperbolic PDE to derive a nonlinear
ODE system, which exactly describes the original PDE system. Then, the
control design is performed in the ODE system instead of the original PDEs,
which means that results for the description of sliding regimes in the control
theory of lumped parameter systems become available for the PDE control
problem. This approach was first proposed in [24]. A comparative study
between this control methodology and another classic methodologies, such
as PID and model predictive controllers, was shown in [41, 42]. Through
a set of numerical tests it was shown that the DSMC approach is better
than PID and model predictive controllers in settling time and disturbances
rejection.





Chapter 6

Conclusions and future works

Most of the results in the literature for analysis of control systems and
development of algorithms for controller design are for systems modeled by
ODEs. However, in many practical engineering systems the variable to be
controlled depends on several independent variables (for example time and
space). When there is more than one independent variable, it is natural
to model the dynamics of the system by PDEs. In this thesis we studied
and developed control methodologies for systems with dynamics modeled
by first-order hyperbolic PDEs.

For a better understanding of the dynamic behavior of these systems,
in Chapter 2 it was first studied the main properties of first-order hyper-
bolic PDEs. It was shown that for these systems there exist a coordinate
transformation, called characteristic coordinates, that transform the PDEs
into its diagonal form. Interestingly, in this framework the PDE can be
transformed, along specific curves, into a set of ODEs without any approx-
imation. This methodology of transforming the hyperbolic system into a
set of ODEs is called method of characteristics and it can be used for the
solution of the Cauchy problem associated with the PDE. Furthermore,
the method of characteristics yields valuable insights into different aspects
of the solution, that leads to the development of the control methodologies
considered throughout this thesis.

These control methodologies were studied and developed for a set of spe-
cific control problems, but the results were presented, whenever possible, in
a general form. More precisely, the control methodologies were studied and
developed for the application on the following control problems: (i) suppres-
sion of slugging phenomenon in oil production facilities; (ii) stabilization of
thermoacoustic oscillations in the Rijke tube; (iii) control of temperature
of a solar power plant, and; (iv) control of pH of a tubular photobioreactor.
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Since there is no general control theory to deal with PDEs and due to the
fact that these systems have different control problems and mathematical
models, we used different control methodologies to treat them.

In Chapter 3 we have described a control methodology, developed in [8],
for the suppression of slugging phenomenon in oil production facilities. We
first present this methodology for a general n×n first order linear hyperbolic
system. The idea is to impose a new boundary condition into the system
as a linear combination of the system states, where each state is multiplied
by a coefficient. By a Lyapunov based design method, the value of these
coefficients are chosen to ensure the exponential stability of the system.
The control variable is then designed such that the boundary condition of
the system behaves like this new boundary condition that guarantee the
system stability. Simulation results applied in the nonlinear model showed
the effectiveness of the method. Comparing to other control methodologies
applied on this system, the proposed control law guarantees stability for
greater values of the choke opening. Most of the control methodologies (see
for instance [28]) stabilize the system for choke opening at the maximum
of 20-25%, whereas the control law developed in this thesis can achieve
values of choke opening of more than 45%. However, the main limitation of
this control law is, of course, the requirement of sensors of pressure at the
outlet valve, bottom pressure and total flow-rate. In some real cases this is
not feasible. The development of a state observer together with the control
law is probably the best option in these cases. Moreover, in the simulations
it was considered constant inlet of gas. From a practical point of view, it
should be considered influxes of gas. These issues should be solved before
to apply the control law into a real system.

In Chapter 4 we focused on the boundary feedback stabilization of the
thermoacoustic phenomenon in the Rijke tube by a frequency domain ap-
proach. For this system, we first compute theoretically an irrational transfer
function, based on its linearized PDE model, and then we provide a de-
tailed characterization of the poles and zeros of the system. To stabilize
the system, a proportional control law with delayed output is proposed.
Using the Nyquist theorem for infinite dimensional systems and analyzing
the closed-loop poles for high frequencies we derived necessary and suffi-
cient conditions for the input-output stability. Experimental results on a
prototype show the effectiveness and real-life applicability of the method.

In Chapter 5 we have addressed the problem of regulation and dis-
turbance rejection for first-order quasilinear hyperbolic systems with the
control variable in the domain of the PDE. The control methodology used
was the distributed sliding mode control and was first proposed in [24].
Its central idea is the combination of the method of characteristics and



6.1 Future works 97

sliding mode control. The method of characteristics is employed to derive
a nonlinear ODE system that exactly describe the original PDE system.
Then, the control design is performed in the ODE system instead of the
original PDEs, which means that all known results for the description of
sliding regimes in the control theory of lumped parameter systems become
available for the PDE control problem. Besides, the well-known chattering
problem of sliding mode control is solved by applying a continuous control
law derived from a candidate Lyapunov function. We have developed this
methodology for systems with relative degree one and two, respectively.
The controllers were implemented, together with a state observer, in a so-
lar power plant and a tubular photobioreactor. In both cases, the control
law demonstrate promising results not only in set-point tracking in spite
of nonlinear dynamics and uncertainties, but also in the presence of strong
disturbances. Moreover, in [41, 42] it was showed, through a set of numeri-
cal tests, that the closed-loop system with the DSMC approach has better
performance than PID and model predictive controllers in settling time
and disturbances rejection.

In general, the methodologies studied for controlling first-order hyper-
bolic PDEs have better performance than classical control approaches. This
second one is based on simplifying assumptions that the control and con-
trolled variables are spatially uniform. Yet, many control problems involve
regulation or stabilization of variables which are distributed in space, and
cannot be effectively solved with the traditional approaches. Moreover,
the trend in industrial processes is to meet increasingly stringent safety
regulations, and tighter product quality and energy specification [15]. In
addition, they must be flexible enough to meet the product demands of a
rapidly changing world market, utilize feedstocks, and minimize the use of
dangerous chemicals. If these processes have distributed parameters, then
the methodologies studied in this thesis and others in literature will be
critical for the economic success of the industry.

These needs, together with the advances in the development of mathe-
matical models that predict the behavior of distributed parameter systems
provide a strong justification of the use of feedback control of these processes
based on PDEs.

6.1 Future works

This thesis is an ongoing work, hence, there are topics that need further
research. The main ones are the following:

i. Stability analysis of control law (3.42) into the nonlinear slugging model
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(A.10). In order to prove the local stability of the nonlinear system the
following augmented Lyapunov function should be used

V =

∫ L

0

[(
υ+TP0υ

+
)
e−µ1x +

(
υ−TP1υ

−) e−µ1x
]
dx+∫ L

0

[(
ξ+TQ0ξ

+
)
e−µ2x +

(
ξ−TQ1ξ

−
)
e−µ2x

]
dx+∫ L

0

[(
w+TB0w+

)
e−µ2x +

(
w−TB1w−

)
e−µ2x

]
dx,

where

P0 = D2
0

(
Λ+
)−1

, P1 = D2
1

(
Λ−
)−1

,

Q0 = D2
0

(
Λ+
)
, Q1 = D2

1

(
Λ−
)
,

B0 = D2
0

(
Λ+
)3
, B1 = D2

1

(
Λ−
)3
,

and ξ , ∂υ
∂x and w , ∂2υ

∂x2 .

ii. To show that the input-output stability of the proposed control law
for the Rijke tube control problem, studied in Chapter 4, implies the
exponential stability of the states of the system.

iii. Development of state observers based on PDE models, with convergence
guaranteed, for the cases studied in Chapter 3 and 5. Thus, the results
of this thesis can been generalized to output-feedback control systems.

iv. To test the control law developed in Chapter 3 in an experimental
plant to further corroborate the results presented here.

v. To analyze the effect of parametric uncertainties in the control method-
ologies studied throughout this thesis.
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Appendix A

Modeling of slug flow
phenomenon in oil installations

This appendix deals with the slug flow phenomenon in oil well and flow
lines. In Section A.1 we briefly describe the characteristics of the slug flow
and its impact on the level of oil production. Then, in Section A.2, we
present a mathematical model for two-phase flow able to reproduce the
slugging phenomenon. Numerical results are presented in Section A.3 to
demonstrate that the model reproduces the slug flow phenomenon similarly
to other results in the literature.

A.1 Description of slug flow

Slug flow is a multiphasic flow regime that occurs mainly in oil installa-
tions, such as gas lift well and flowline risers (Figure A.1 summarizes the
family of systems we are focusing in this appendix). This phenomenon is
characterized by intermittent axial distribution of gas and liquid that lead
to oscillatory flow patterns. Consequently, there may be dangerous varia-
tions in oil production due to changes in pressure and liquid and gas flow.
Mature oil fields, increase of gas-oil ratio and increase of water fraction are
probably the main cause of this type of unstable flow.

A typical slugging bifurcation diagram, considering the outlet vale open-
ing (production choke) as a bifurcation parameter, is shown in Figure A.2.
As can be seen, a supercritical Hopf bifurcation takes place at the point
HBsup, giving rise to a stable limit cycle. As negative effects of this type of
phenomenon, it can be mentioned the oil production detriment and several
issues concerning safety of operations on the surface equipment, which can
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Figure A.1: Family of systems subjected to the slugging phenomenon [67].

provoke several undesired effects as deteriorating the separation quality
and level overflow in the multiphase flow separator [68].

Several methodologies have been developed to avoid the undesirable
slugging phenomenon, between them, the active control of the outlet valve
has been shown a promising method to suppress these oscillations [28].
These controllers use mainly upstream pressure sensors (a sensor located
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supercritical Hopf bifurcation HBsup.
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at the bottom of the pipe) in the feedback-loop to stabilize the flow by
outlet valve actuation.

A.2 Mathematical model

Systems subjected to slugging phenomenon consist of pipes ranging from
several hundreds to several thousands meter-long pipes filled with oil, gas,
and sometimes water. The distributed nature of these systems suggests
models consisting of PDEs [69]. The model used in this work is similar to
that proposed by [70], but the friction against the pipe walls is considered
and a homogeneous model for the two-phase flow is used. Moreover, it is
assumed constant temperature along the pipe, incompressible oil, and no
mass transfer between the gas and liquid phase. In this context, the PDEs
that describe the system behavior are given by

∂αgρg
∂t

+
1

A

∂qg
∂x

= 0, (A.1)

∂αlρl
∂t

+
1

A

∂ql
∂x

= 0, (A.2)

∂ρmvm
∂t

+
∂P + ρmv

2
m

∂x
= − f

2d
ρmv

2
m − ρmg sin θ(x), (A.3)

where, for k = g or l, αk denotes the volume fraction of phase k, ρk its
density and qk its flow rate. The pressure is denoted by P , ρm is the density
of the mixture, vm is the velocity of the mixture, f accounts for the friction
factor, d is the pipe diameter and A its cross-section area, and θ(x) is the
inclination of the pipe. The time variable is t ∈ [0,+∞) and x ∈ [0, L]
is the space variable, where L is the length of the pipe. Note that in the
above equations we have omitted the time and space arguments for sake
of legibility.

Besides the PDE model (A.1)-(A.3), the following algebraic equations
are used for system closure:

αg + αl = 1, ρm = αgρg + αlρl, (A.4)

P =
ρgRT

M
, w =

αgρg
αgρg + αlρl

, (A.5)

where R is the specific gas constant, M is the gas molar weight, w is the
gas mass fraction, and T is the temperature.

Regarding the boundary conditions, they are given at both ends of the
pipe. At the bottom, two boundary conditions are given: one for the liquid
flow rate, assuming that it is linearly depend on the pressure drop between
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the pipe and the oil reservoir, and other boundary condition for the gas
flow rate, assumed to be constant. They are expressed as

ql(0, t) = PI[Pr − P (0, t)], (A.6)

qg(0, t) = qg, (A.7)

where ql is the liquid flow rate, qg is the gas flow rate, PI is a constant
coefficient called productivity index and Pr is the pressure in the reservoir,
assumed to be constant.

At the top, the total flow rate, qt = ql + qg, is assumed to be governed
by a valve equation of given by

qt(L, t) = Cout u(t)
√
ρm(L, t)(P (L, t)− Ps), (A.8)

where Ps is the pressure in the separator, Cout is a valve constant and u is
the valve opening, which is the manipulated variable.

A.2.1 Formulating the model as a quasilinear hyperbolic sys-
tem

Consider the following state vector

υ =
[
υ1 υ2 υ3

]T
=
[

αgρg
αgρg+αlρl

P qt
]T
.

Combining Equations (A.1)-(A.3), with relations (A.4)-(A.5), it is pos-
sible to rewrite the system as

∂H

∂t
(υ(x, t)) +

∂F

∂x
(υ(x, t)) = G(υ(x, t)). (A.9)

Note that ∂H(υ)
∂t = H ′(υ)∂υ∂t , therefore the above equation can be rewritten

to

∂υ

∂t
(x, t) +A(υ(x, t))

∂υ

∂x
(x, t) = S(υ(x, t)). (A.10)

where

A(υ(x, t)) = H ′(υ(x, t))−1F ′(υ(x, t))

S(υ(x, t)) = H ′(υ(x, t))−1G(υ(x, t))

The expression of A(υ(x, t)) and S(υ(x, t)) are given by (A.11) and
(A.12), respectively.
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A.2.2 Well-posedness

To guarantee that A and all the other functions of υ belong to C 1, we
restrict our study to a set

υ ∈ K ⊂ (0, L)× (Ps, Pr)× (0, +∞) ⊂ R3

For each value of υ ∈ K, A has 3 real eigenvalues λi(υ), i = 1, 2, 3, as

well as a set of linearly independent left eigenvectors l(υ) =

 l1(υ)
l2(υ)
l3(υ)

.

The following inequalities hold

∀υ ∈ K, λ2(υ) < 0 < λ1(υ) < λ3(υ).

This ensures that the system is strictly hyperbolic, according to Defi-
nition 2.2. In order to apply Theorem 2.2, to establish the well-posedness
of the mixed initial-boundary value problem, we have to rewritte the
boundary conditions (A.6)-(A.8). More precisely, given a C1 initial con-
dition ϕ : [0, L] → K, there must exist two functions gl : R → R2 and
gr : R2 → R such that Equations (A.6)-(A.8) are equivalent to{

z = 0 : (ṽ1(0, t), ṽ3(0, t)) = gl(ṽ2(0, t))
z = L : ṽ2(L, t) = gr(ṽ1(L, t), ṽ3(L, t), u)

where ṽ(x, t) = l(ϕ(x))υ(x, t).
The existence of such functions only depends on the choice of the initial

condition ϕ. Rewriting (A.6)-(A.8) in the υ variables we get, for the left
boundary conditions,

hl(υ1, υ2, υ3) =

(
(1− υ1(0, t))υ3(0, t)− PI(Pr − υ2(0, t))

(1− υ1(0, t))υ3(0, t)− qg

)
= 0,

whereas the right boundary condition reads

hr(υ1, υ2, υ3, u) = υ3 − Cout u(t)×√
υ2(L, t)ρlM

Mυ2(L, t)(1− υ1(L, t)) + υ1(L, t)RTρl
(υ2(L, t)− Ps) = 0.

In the υ̃ variables, these equations can be rewritten to

z = 0 : h̃l(υ̃1, υ̃2, υ̃3) = hl(m1υ̃, m2υ̃, m3υ̃) = 0,

z = L : h̃r(υ̃1, υ̃2, υ̃3, U) = h̃r(υ̃1, υ̃2, υ̃3) = hr(m1υ̃, m2υ̃, m3υ̃, U) = 0
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where the mi are line vectors such that m(υ) =

 m1(υ)
m2(υ)
m3(υ)

 = l−1.

A necessary and sufficient condition for the functions gl and gr to exist
is that the following Jacobian matrices(

∂h̃l
∂ṽ2

(ṽ1(0), ṽ2(0), ṽ3(0)) ∂h̃l
∂ṽ3

(ṽ1(0), ṽ2(0), ṽ3(0))
)

and (
∂h̃r
∂ṽ1

(ṽ1(L), ṽ2(L), ṽ3(L))
)

are nonsigular. Then, the Implicit Function Theorem guarantees the exis-
tence of gl and gr. Further, the well-posedness follows, according to Theorem
2.2 given that ϕ also verifies conditions of C1 compatibility.

A.3 Simulation results

This section shows the simulation results of the open-loop quasilinear model
(A.10). The model parameters are shown in Table A.1. We consider a
2500 meter long vertical well with reservoir pressure Pr = 180 bar and
separator pressure Ps = 10 bar. For the numerical simulations, the space
was divided in N sections and the space derivatives were written using a
finite difference scheme. These equations were solved by using ODE solver.
To ensure numerical stability, the Courant-Friedricks-Lewy condition was
used.

In Figure A.3 is shown an open loop simulation of the quasilinear
system (A.10). The simulation starts with the production choke opened
to Z = 100% and then after t = 8 h the production choke is closed to
Z = 50% and to Z = 20% after more 8 hours. The oscillations have a period
around of 50 minutes. For this case study, the supercritical Hopf bifurcation
point, HBsup take place at a valve opening Z(t) = 22% (this value was
found by performing several simulations for different valve openings). The
corresponding open-loop bifurcation diagram for the valve opening is shown
in Figure A.2.
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Table A.1: Parameters of the slug flow model.
Symbol Description Value and units
A pipe cross-section area 0.0094 m2

Cout valve constant 0.0024 [-]
d pipe diameter 0.1092 m
g gravity constant 9.81 m s−2

R universal gas constant 8.31 J K mol−1

L length of the tube 2500 m
M gas molar weight 0.016 Kg mol−1

θ inclination pipe 90o

PI productivity index 0.3 kg (s bar)−1

Pr reservoir pressure 180 bar
Ps separator pressure 10 bar
T temperature 300 K

0 5 10 15 20 25 30 35

150

160

170

180

B
o

tt
o

m
 p

re
s
s
u

re
 (

b
a

r)

0 5 10 15 20 25 30 35

10

15

20

25

30

T
o

p
 p

re
s
s
u

re
 (

b
a

r)

0 5 10 15 20 25 30 35

Time (h)

0

50

100

C
h

o
k
e

 o
p

e
n

in
g

 (
%

)

Figure A.3: Bottom and top pressure for different choke opening values.



Appendix B

Modeling thermoacoustic
phenomenon in the Rijke Tube

This appendix describes the thermoacoustic phenomenon in the Rijke tube.
In Section B.1, we briefly describe the Rijke tube and the thermoacoustic
phenomenon. Its mathematical model is presented in Section B.2. In this
work, the Rijke tube is modeled as a heating section embedded within a
network of pipes. Simulation results validating the model with real data
from the system are shown in Section B.3.

B.1 System description

B.1.1 The Rijke tube

The Rijke tube experiment basically consists of a vertical tube opened in
both ends and a heater source in the lower half. A speaker placed to a slight
distance under the tube is used as actuator, while a microphone placed
near the top of the tube provides the pressure measurement.

In this work, all the experiments were performed on a simple 1.3 meter
long glass tube with an electrical heating element made of nichrome wire
coil (see Figure B.1). The power is delivered into the coil using a DC power
supply with power output 360 W. The location of the electrical heating
element was chosen to be a quarter of the tube length. The sound pressure
in the tube is measured with a clip-on microphone with built-in preamplifier.
This signal is sent to a control computer through a data acquisition device.
The control system is implemented as part of a SCADA program based
on a LabVIEW software. In such configuration the control algorithm is
implemented as Matlab function executed from the SCADA program. For
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Figure B.1: Rijke tube schematic and detailed view of the prototype used
for the experiments.

the closed-loop experiments it was used a 30 W ceiling speaker as the
actuator together with a linear amplifier.

B.1.2 The thermoacoustic phenomenon in the Rijke tube

In the Rijke tube, thermoacoustic phenomenon refers to the creation of
sound due to the transfer of energy from a thermal source to acoustic
waves. In this system, the heat source excites acoustic waves: the heat
source transfers heat to the air in the tube, making the air to rise up and
creating an upward flow. The rising hot air becomes dense by coming in
contact with the cooler walls of the upper half of the tube. This means that
in the lower half of the tube, the air always experiences expansion, while in
the upper part, the air always experiences compression. This explains how
the heat source in the lower half of the tube leads to creation of a standing
wave. But it is not enough to clarify how the heat source sustains the
already excited acoustic waves. This part of the phenomenon is formulated
by the Rayleigh’s criterion [71]. This criterion states that if heat be given to
the air at the moment of greatest condensation, or be taken from it at the
moment of greatest rarefaction, the oscillation is encouraged. On the other
hand, if heat be given at the moment of greatest rarefaction, or taken from
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Figure B.2: (a) Microphone signal at the onset of instability showing growth,
and then saturation of the limit cycle. A zoomed-in picture shows the
periodic, but nonsymetric, limit-cycle behavior. (b) Bifurcation diagram of
non-dimensional velocity with heat release as bifurcation parameter.

it at the moment of greatest condensation, the oscillation is discouraged.
In mathematical terms, the Rayleigh’s criterion is formulated in terms of
the Rayleigh integral over the control volume V :

I =

∮
V

P̃ (t)Q̃(t)dt, (B.1)

where P̃ is the acoustic pressure fluctuation, Q̃ is the fluctuation in heat
power released in the heater, and t is time.

According to the Rayleigh’s criterion, if I < 0, the acoustic oscillations
will damp out. If I > 0, then acoustic oscillations will grow. And, if I = 0,
the oscillations will neither be damped out nor amplified.

A typical sound pressure output evolution is shown in Fig. B.2(a). At
the beginning of the experiment, the heater coil power supply was turned on
and increased until 300 W, which is the critical heater power which the tube
begin to hum. As can be seen in that figure, at this point the sound pressure
grows exponentially, behaving then as a linear system. When the pressure
amplitude grows beyond the bounds of linearity the system behavior moves
into nonlinear regime (limit cycle). The sound frequency, under standard
conditions, is approximately twice the length of the tube (see the bottom
graphic of Figure B.2(a)).

Figure B.2(b) depicts the bifurcation graphic of the Rijke tube consider-
ing the heat release as bifurcation parameter. For small values of heat power,
the system equilibrium is stable and all perturbations decay asymptotically
resulting in steady flow within the tube. As the heat power increases, the
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stability margin of the system decreases and at a critical value of the heat
power a Hopf bifurcation takes place, giving rise to a limit cycle. This limit
cycle is unstable and the Hopf bifurcation is subcritical in nature. As the
amplitude of this limit cycle increases in magnitude, it collapses with a
stable limit cycle in a Fold bifurcation. Note that between the Fold and
the Hopf Bifurcation points coexist (i) one stable equilibrium point, (ii)
and two periodic orbits, one unstable (inner limit cycle) and other stable
(outer). This is the range of bistability, depending on amplitude of the
initial perturbation either a steady state or a limit cycle is reached. The
influence of other bifurcation parameters, such as the heat release position,
can be seen in [72].

B.2 Mathematical model

The Rijke tube can be modeled as a heating section embedded within a
network of pipes. We assume that the fluctuations of pressure, density, and
velocity occur only along the axial direction. Therefore, the system can be
described by the one-dimensional mathematical model of compressible gas
dynamics. Furthermore, the heating release zone is assumed to be located
in a very narrow section.

The Rijke tube is composed of 2 compartments described by the lin-
earized Euler equations of gas dynamics:

∂ṽi
∂t

(t, xi) +
1

ρ

∂P̃i
∂xi

(t, xi) = 0, (B.2)

∂P̃i
∂t

(t, xi) + γP
∂ṽi
∂xi

(t, xi) = 0, (B.3)

i = 1, 2,

where t ∈ [0, +∞) is the time, x1 ∈ (−xu, 0), x2 ∈ (0, xd), xu, xd > 0, γ
is the adiabatic ratio, P̃ is the pressure fluctuation, and ṽ is the velocity
fluctuation. The steady-state density and pressure are denoted by ρ and
P , respectively. It is important to emphasize that in this work the steady-
state density, pressure and velocity are assumed to be constant along the
space. Furthermore, the steady-state values are considered the same for
both compartments of the tube.

The initial condition is defined by

ṽi(0, xi) = ṽi,0(xi), P̃i(0, xi) = P̃i,0(xi),

i = 1, 2.
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We represent the interconnection between the downstream and up-
stream part of the system by the following algebraic relations, which can
be directly obtained by linearizing the equations conservation of mass,
momentum and energy across the heat zone x = 0,

P̃2(t, 0)− P̃1(t, 0) = 0, (B.4)

γP ṽ2(t, 0)− γP ṽ1(t, 0) =
γ

A
Q̃(t), (B.5)

where A is the cross-sectional area of the tube and Q̃ is the fluctuation
of heat power released in the heater. Following [30], we assume that the
fluctuation of heat power is expressed by the following ordinary differential
equation (ODE)

τ
dQ

dt
(t) = −Q̃(t) + hv ṽ1(t, 0), (B.6)

where thr is the heat release time constant and hv is the velocity-dependent
heat transfer coefficient.

Moreover, the system (B.2)-(B.3) is subjected to the following boundary
conditions

P̃1(t,−xu) = u(t), P̃2(t, xd) = 0, (B.7)

where u is the control input.

Remark B.1. In [73] it was computed an explicit estimation for the Rayleigh
integral (B.1) from the equations (B.2)-(B.7). The thermoacoustic oscilla-
tions amplitude grows if the acoustic energy stored in the tube increases in
time average, i.e.,

γ − 1

ρc2
P̃ (0)

Q

A
> P̃ (L)ṽ(L)− P̃ (0)ṽ(0) + ηLc

(
P̃ 2(0)

ρc2
+ ρṽ2(0)

)
, (B.8)

where • is the mean value (in time) of its argument, ηLc

(
P̃ 2(0)
ρc2 + ρṽ2(0)

)
is the Stokes layer, and η is the attenuation constant of the sound wave
traveling along the tube.

Well-posedness

To study the existence and uniqueness of the solution of system (B.2)-(B.7),
we will introduce the characteristic coordinates. This result is presented in
the following lemma, which can be easily proved by direct computation.
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Lemma B.1. Consider the invertible linear transformation T : L 2(0, 1)×
L 2(0, 1) −→ L 2(0, 1)×L 2(0, 1) such that(

ṽi
P̃i

)
= T

(
ξi1
ξi2

)
=

(
1

2
√
Pγρ

− 1

2
√
Pγρ

1
2

1
2

)(
ξi1
ξi2

)
.

The transformed linear system from (B.2)-(B.3) is written as

∂ξi1
∂t

(t, xi) + λ
∂ξi1
∂xi

(t, xi) = 0, (B.9)

∂ξi2
∂t

(t, xi)− λ
∂ξi2
∂xi

(t, xi) = 0, (B.10)

i = 1, 2,

where λ =
√

Pγ
ρ .

The initial condition is defined by

ξi1(0, xi) = ξi1,0(xi),

ξi2(0, xi) = ξi2,0(xi),

i = 1, 2.

The boundary conditions (B.4)-(B.7) are given by

ξ21(t, 0) = ξ11(t, 0) +
γρ

A
√
Pγρ

Q̃(t) (B.11)

ξ12(t, 0) = ξ22(t, 0) +
γρ

A
√
Pγρ

Q̃(t), (B.12)

τ
dQ̃

dt
(t) = −Q̃(t) +

hv

2
√
Pγρ

(ξ11(t, 0)− ξ12(t, 0)) , (B.13)

ξ11(t,−xu) = −ξ12(t,−xu) + 2u(t), (B.14)

ξ22(t, xd) = −ξ21(t, xd). (B.15)

Without loss of generality, it can be assumed that, by re-scaling the space
variable, the two counterparts of PDE (B.9)-(B.15) evolve in the domain
from 0 to 1. Indeed, define z = xu+x

xu
for x ∈ [−xu, 0), and z = xd−x

xd
for

x ∈ (0, xd], and consider

∂

∂z
=

{ 1
xu

∂
∂x if x ∈ [−xu, 0)

− 1
xd

∂
∂x if x ∈ (0, xd)
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This leads to express the system (B.9)-(B.15) into

∂ξ

∂t
(t, z) + Λ

∂ξ

∂z
(t, z) = 0, (B.16)

ξ(0, z) = ξ0(z), (B.17)

ξ21(t, 1) = ξ11(t, 1) +
γρ

A
√
Pγρ

Q̃(t), (B.18)

ξ12(t, 1) = ξ22(t, 1) +
γρ

A
√
Pγρ

Q̃(t), (B.19)

τ
dQ̃

dt
(t) = −Q̃(t) +

hv

2
√
Pγρ

(ξ11(t, 1)− ξ12(t, 1)) , (B.20)

ξ11(t, 0) = −ξ12(t, 0) + 2U(t), (B.21)

ξ22(t, 0) = −ξ21(t, 0), (B.22)

where z ∈ [0, 1] is the re-scaled space variable, and

ξ = (ξ11, ξ12, ξ21, ξ22),

Λ = diag {−λ/x0, λ/xu, λ/xd, −λ/xd} .

In the framework (B.16)-(B.22), the rijke tube mathematical model is
represented by four transport PDEs evolving in the domain z ∈ [0, 1] and
coupled at the boundaries.

The existence and uniqueness of the solution of system (B.16)-(B.22)
can be proved by the method of characteristics, which enables us to restate
the PDE as a set of classical ODEs. Then, if ξ0 and u are continuously
differentiable functions of their arguments and if ξ0 and the boundary
conditions verify conditions of C1 compatibility, one can show that the
solutions of the system are continuously differentiable with respect to their
arguments, i.e., ξ ∈ C1([0, 1]× [0, ∞);R4). Moreover, based on a extension
of [2], there exist M > 0 and η such that for any t ∈ [0,∞), any ξ ∈
C1([0, 1];R4) and any u(t) ∈ L 2([0, t];R4)∩C1([0, t],R4), there exists Kt

such that

‖ξ(·, t)‖L 2([0, 1];R4) +
∣∣∣Q̃(t)

∣∣∣ ≤Meηt
(
‖ξ0‖L 2([0, 1];R4) +

∣∣∣Q̃(0)
∣∣∣)

+Kt

∥∥∥u(t)
∥∥∥

2
,

where U (t) denotes the restriction of u to [0, t].
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Table B.1: Values of the parameters of the system.
Symbol Description Value
ρ Density 1.2 kg/m3

P Pressure 105 N/m2

v Velocity 0.35 m/s
γ Adiabatic ratio 1.4
γ γ − 1 0.4
L Tube length 1.3 m
x0 Heater position 1

4L
d Tube diameter 0.0762 m
Ru Reflection coefficient −0.95
Rd Reflection coefficient −0.95
thr Heat-release time constant 0.002
hv Velocity-dependent heat 200

transfer coefficient

B.3 Model validation

This section shows the validation results of the Rijke model (B.2)-(B.7)
in the frequency domain. The model parameters used for the results are
shown in Table B.1. They were based on the estimation made in [74].

Figure B.3(a) shows the open-loop frequency response for the experi-
ment described in Section B.1. For this experiment, the system was first
brought to the unstable regime. Then, a feedback control law is turned
on, and the test signal, in this case a sine sweep over the frequency range
100− 900 Hz, is added to the feedback signal. The microphone, positioned
at xmic ≈ 3.6

4 L, records the sound pressure for the duration of the exper-
iment (the data used here was collected over 20 s). Notice that with this
experiment we will obtain the frequency response of the closed-loop system,
but the open-loop frequency response can be recovered using some simple
algebra. The open-loop frequency response of model (B.2)-(B.7) is depicted
in Figure B.3(b).

As can be seen, by comparing Figure B.3(b) and Figure B.3(a), the
model qualitatively capture the most important features of the real system:
resonant peaks, a phase increase of 180 ◦ at the first peak for the unstabilized
open loop, and phase drops of the same amount at the higher-order peaks.
There remain however unknown parameters in G(s): overall gain due to the
unknown conversion factors of speaker and microphone, the linear gain hv,
time constant τ and assumptions about friction, diffusive effects, and the
stead upward flow. It should be emphasized however, that the real power
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of the model lies in the explaining the thermoacoustic stability with a very
simple model.
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(a) Bode plot obtained by applying a sine sweep, over the range
100 − 900 Hz, into the experimental plant.
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(b) Bode plot of model (4.14).

Figure B.3: Validation result: bode plot of the Rijke model and the experi-
mental plant.





Appendix C

Modeling of solar power plants

This appendix presents the solar thermal plan located at the CIESOL
(Centro de Investigación de la Energia Solar, in Spanish) building, a Solar
Energy Research Center in the University of Almeŕıa - Spain. In Section
C.1, we give the description of this solar thermal plant and its control
objective. The mathematical model of the system is described in Section
C.2. Then, in Section C.3 the mathematical model is validated with real
data from the real system.

C.1 System description

The solar collector field used in this work is located at the CIESOL (Centro
de Investigación de la Energia Solar, in Spanish) building, a Solar Energy
Research Center in the University of Almeŕıa - Spain. The energy generated
by the heat generation process is applied to an absorption cooling unit in
order to obtain chilled water. More details about the CIESOL solar cooling
process can be found in [75].

Basically, the solar energy facility is composed of a solar flat collector
field installed in the roof of the building, two tanks used for hot water
storage, and a gas heater as auxiliary heat source. These elements are
connected by a net of pipes, including three-way valves to modify the
operation mode and a variable radial pump that allows to set the flow rate.
Since the focus of this paper is the control of the outlet temperature of the
solar collector field, just such subsystem is considered to be described in
this work. The interested reader can found more details of the whole plant
in [75].

The solar collector field (see Figure C.1) has total surface of 160.2 m2.
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Its main purpose is to increase the temperature of the fluid to provide the
desired outlet temperature in an operation range between 50 ◦C and 100
◦C.

Figure C.1: Solar field in CIESOL [75].

An inherent characteristic of the solar collector fields is the presence of
resonance modes, producing unacceptable oscillatory behavior in the outlet
temperature. This phenomena is excited, mainly, when fast rise time speci-
fications of the control system or when there exist hard disturbances [76,
77].

The main disturbances are the inlet temperature variation, the ambient
temperature and abrupt changes of the solar irradiance. The controlled
variable is the mean outlet temperature of the solar collector field and the
control variable is the fluid velocity/flow provided by the pump which flow
range is 2.5 to 11 m3/h.

C.2 Mathematical model

The modeling of the solar thermal system of the CIESOL building was
firstly presented in [75]. The subsystem of the solar collector field has been
modeled by two coupled hyperbolic PDEs, one for the collector plate and
one for the thermal fluid (water).

The equation for collector plate takes into account the influence of solar
irradiance and the thermal losses to the ambient and the fluid. It is defined
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as

ρm Cm Am
∂Tm
∂t

(x, t) = ηo G I(t)− hl(Tm(x, t)− Ta(t))−

Di π ht (Tm(x, t)− Tf (x, t)), (C.1)

where Tm is the metal temperature, Tf is the fluid temperature, Am is
the metal cross-sectional area, and Cm and ρm are the metal specific heat
capacity and metal density, respectively. The Global coefficient of thermal
losses is given by hl, Ta is the ambient temperature, ht is the coefficient of
metal-fluid transmission, Di is the inner diameter of the pipe line, I is the
solar irradiance, and G and ηo are the mirror optical aperture and mirror
optical efficiency, respectively.

On the other hand, the equation for the fluid temperature, considers the
convection effect of the fluid flow, and the thermal transference produced
between the collector plate and the fluid. The dynamic behavior of the
fluid is defined as

ρf Cf Af
∂Tf
∂t

(x, t) + ρf Cf ql(t)
∂Tf
∂x

(x, t) =

Di π ht (Tm(x, t)− Tf (x, t)) (C.2)

where Af is the fluid cross-sectional area, Cf is the fluid specific heat
capacity, ρf is the fluid density and ql is the oil pump volumetric flow rate
(control variable).

Besides, the system has one boundary defined by the inlet fluid temper-
ature:

Tf (0, t) = Tin(t). (C.3)

where Tin is the inlet fluid temperature.

C.2.1 Well-posedness

We admit the following assumptions for model (C.1)-(C.2):

Assumption C.1. q, I, and Ta are restricted to the following sets:

q(t) ∈ Qq =
{
q ∈ C1([0, t];R) : 0 ≤ qmin ≤ q(t) ≤ 11,∀t ≥ 0

}
,

I(t) ∈ QI =
{
I ∈ C1([0, t];R) : 0 ≤ Imin ≤ I(t) ≤ Imax,∀t ≥ 0

}
,

Ta(t) ∈ QT =
{
Ta ∈ C1([0, t];R) : 0 ≤ Ta,min ≤ Ta(t) ≤ Ta,max,∀t ≥ 0

}
.
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These assumptions are compatible with the physical characteristics of
the solar power plant. They also ensure the well-posedness of the PDE.
Indeed, applying the method of characteristics into (C.1)-(C.2), we can re-
state the PDE as a set of classical ODEs. Then, given a C1 initial condition
ϕ : [0, L]→ R2 that verifies the conditions of C1 compability, the system
must be well-posed, according to Theorem 2.2.

C.3 Model validation

The model calibration was performed by comparison of the real data with
the simulations response obtained using estimated parameter values. These
parameters values (see Table C.1) were determined by a genetic algorithm
fitting the ISE (integral of squared error) criterion. For more details about
the model calibration and validation procedure the interested reader is
referred to [75].

Figure C.2 shows the outlet temperature of the model compared to real
experimental data.

As can be seen in the upper graphic of Figure C.2 The initial tempera-
ture transient of the model and real system shows a significant difference
due to the fact that is very hard to know the initial temperature profile of
tube and fluid. But, after the initial transient, the model tends to the real
system temperature with a maximum discrepancy of ±2 ◦C.

Table C.1: Solar plant model parameters [75].
Symbol Description Value and units
L Solar collector field length 18.29 m
ρm Metal density 1100 kg/m3

ρf Fluid density 1000 kg/m3

Cm Metal specific heat capacity 440 J/(K kg)
Cf Fluid specific heat capacity 1100 J/(K kg)
Am Metal cross-sectional area 0.0038 m2

Af Fluid cross-sectional area 0.0013 m2

ηo Mirror optical efficiency 0.67
G Mirror optical aperture 0.9143 m
hl Global coefficient of thermal losses 20.773 W/(m2 K)
ht Coefficient of metal-fluid transmission 1283.2 W/(m2 K)
Di Inner diameter of the pipe line 0.04 m
D0 External diameter of the pipe line 0.07 m



C.3 Model validation 129

11 11.2 11.4 11.6 11.8 12 12.2 12.4
50

55

60

65

70

75

T
e
m

p
e
ra

tu
re

 (
ºC

)

2

4

6

8

10

12

V
o

lu
m

e
tr

ic
fl
o

w
 (

m
3
/h

)

Outlet temperature - real

Outlet temperature - model

Volumetric flow

11 11.2 11.4 11.6 11.8 12 12.2 12.4

Solar time (h)

500

650

800

950

Ir
ra

d
ia

ti
o

n
 (

W
/m

2
)

45

50

55

60

T
e
m

p
e
ra

tu
re

 (
ºC

)

Solar irradiance

Inlet temperature

Figure C.2: Validation results: simulated and experimental data of the
outlet temperature as a function of solar radiation and volumetric flow.





Appendix D

Modeling biomass production in
outdoor tubular
photobioreactors

This appendix describes the biomass production process of the outdoor
tubular photobioreactor located at Las Palmerillas Experimental Station,
property of Cajamar fundation, in Almeria-Spain. In Section D.1, we briefly
describe this tubular photobioreactor. Its mathematical model is presented
in Section D.2. In this work, the mathematical model is formed of two
interconnected compartments: a bubble column and a solar receiver. Each
of this compartments is described by a set of mass balances for the liquid
and gas phase. Simulation results validating the model with real data from
the system are shown in Section D.3.

D.1 System description

The photobioreactor used in this work for the design of control strategies is
based on a tubular photobioreactor located at Las Palmerillas Experimental
Station, property of Cajamar fundation, in Almeria-Spain. This photobiore-
actor is located inside a greenhouse where the Scenedesmus almeriensis
microalga is cultivated. This kind of microalga is characterized by a high
growth rate, withstanding temperature up to 45 ◦C and pH values up to
10 [78].

A general scheme of the plant is depicted in Figure D.1, showing the
main components: (i) the external loop and (ii) the bubble column.

The external loop is made of transparent tubes with 0.09 m diameter
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photobioreactors
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Data
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Figure D.1: A schematic view of a tubular photobioreactor at Las Palmeri-
llas experimental station, Almeŕıa-Spain.

and joined into a loop configuration to obtain a total horizontal length of
400 m, with a capacity of 2200 L. The objective of the external loop is to
increase the surface exposed to the sun in order to the microalgae capture a
larger amount of radiation and perform photosynthesis. Moreover, CO2 in
gas phase is injected at the beginning of the loop to provide the inorganic
carbon to growth and to control the pH of the culture.

The bubble column is 3.25 m high and 0.5 m in diameter, with a capacity
of 400 L, and performs several functions. On one hand, it is used for mixing
the culture and desorption of O2 produced during the photosynthesis by
air injection at a flow rate of 140 L/min. On the other hand, nutrients are
also added in the column and the biomass harvesting is performed in this
part of the process. The culture is continuously recirculated between the
loop and the column using a pump located in the bottom of the column.
The culture medium composition is shown in Table D.1. Furthermore, the
culture is operated in nutrient-sufficient conditions: nutrients are ever at
concentrations not limiting the growth.
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Table D.1: Composition of the culture medium used in the tubular photo-
bioreactor.

Component Concentration [mmol/L]
Ca(NO3)2 7.92
KH2PO3 2.45
MgSO4 2.71
Fe-EDTA 4.8190×10−3

Zn-EDTA 6.566×10−4

Mn-EDTA 3.8647×10−3

Cu-EDTA 2.829×10−4

Mo 6.949×10−4

B 2.15850×10−2

The pH, temperature, and dissolved oxygen are measured with Crison
probes at several points of the solar receiver of the photobioreactor: three
positions for dissolved oxygen, five positions for pH and temperature. These
measurements are well distributed along the tube. The biomass concen-
tration is estimated from a turbidity meter located at the bubble column.
Moreover, liquid and gas flow rates are measured using digital flow meters.
All these measurements are connected to a control computer through a
data acquisition device NI Compact FieldPoint.

The pH control problem in tubular photobioreactors deals with keeping
the outlet pH of the external loop at a desired reference value in spite of
disturbances. For this microalga specie, the optimal pH reference value is
8 [63].

The pH behavior in a microalgal culture is mainly influenced by two
phenomena. On one hand, the intake of CO2 as nutrient causes the forma-
tion of carbonic acid, leading to a decrease in the pH of the culture. On the
other hand, when the microalgae perform the photosynthesis they consume
CO2 and generate O2, causing an increase in the pH. The provided CO2 is
transferred to the culture medium as a function of mass transfer coefficient
in the system. Remaining fractions of injected CO2 produce an oscillatory
behavior in the measured pH, because of the continuous recirculation of
the culture, until its total elimination.

The main system disturbances are the medium injected to perform the
biomass harvesting, which introduces total inorganic carbon to the culture,
and thus decreasing the pH value, and solar irradiance changes, caused by
the solar cycle and presence of clouds, producing changes in the rate of
photosynthesis and thus in the rise of pH. The control variable is the CO2

flow/velocity provided by a valve, located at the beginning of the loop (see
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Figure D.1), which flow range is 0 to 5 L/min.

D.2 Mathematical model

The microalgal culture is a two-phase system and it is formed of two in-
terconnected compartments: a bubble column and a solar receiver. In the
liquid phase, biomass, dissolved oxygen and total inorganic carbon con-
centrations mass balances are considered, while the gas phase takes into
account the mass balance of carbon dioxide and oxygen molar fraction.
The dynamic model of microalgal production of photobioreactors was pre-
viously developed and described in [40, 64, 79]. The photobioreactor used
in this work operates under atmospheric pressure, in which no significant
overpressure existing in whatever place of the reactor. The flow is assumed
to be one-dimensional. The reactor operates under controlled temperature
conditions. The variation of temperature along the solar receiver is lower
than 1 ◦C and ranging from 20 to 28 ◦C along the daily cycle, thus no
large changes taking place. For this reason, the temperature balance is
not considered in this work. In the following, the photobioreactor model is
briefly described.

D.2.1 External loop mathematical model

The biomass mass balance is directly dependent on the photosynthesis rate,
thus the equation for the biomass concentration is expressed as

∂Cb
∂t

(x, t) + Vl(t)
∂Cb
∂x

(x, t) = PO2(x, t)Cb(x, t)Yp/x, (D.1)

where t ∈ [0, +∞) is the time, x ∈ [0, L] is the space, Cb is the biomass
concentration, Yp/x is the biomass yield coefficient produced by the oxygen
unit mass, Vl = Ql/(A(1− ε)) is the liquid velocity, A is the cross-sectional
area of the tube, ε is the gas hold-up and Ql is the volumetric flow rate of
liquid. The oxygen production rate per biomass mass unit is given by

PO2(x, t) =
PO2maxI

n
av

Kie(Iavm) + Inav

(
1−

(
[O2](x, t)

KO2

)z)
×(

B1e( −C1
pH(x, t) ) −B2e( −C2

pH(x, t) )
)
− rPO2max

, (D.2)

where KO2
is the oxygen inhibition constant, [O2] is the dissolved oxygen

concentration, PO2max
is the maximum photosynthesis rate for microorgan-

isms under the culture conditions, B1 and B2 are preexponential factors,
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C1 and C2 are the activation energies, r is the respiration factor, and Ki,
m and z are form parameters. The average solar irradiance Iav is given by
the following expression:

Iav(x, t) =
I0(t)αl
KaCbdt,t

(1− e−(KaCb(x, t)dt, l)), (D.3)

where I0 is the solar radiation on an obstacle-free horizontal surface, Ka is
the extinction coefficient and dt, l is the external loop tube diameter. Notice
that the solar radiation is modulated by a factor αl, which represents the
solar radiation fraction available in the particular area of the reactor.

Regarding the dissolved oxygen, this is related to the gas-liquid mass
transfer rate and the photosynthesis rate as

∂[O2]

∂t
(x, t) + Vl(t)

∂[O2]

∂x
(x, t) =

PO2(x, t)Cb(x, t)

MO2

+K
lal,O2(x, t)([O∗2 ](x, t)− [O2](x, t)), (D.4)

where MO2
is the molecular weight of oxygen, K

lal,O2
is the volumetric gas-

liquid mass transfer coefficient for oxygen, [O∗2 ] = HO2PT yO2 is the oxygen
equilibrium concentration with gas phase, HO2 is the Henry’s constant for
oxygen, PT is the total pressure, and yO2

is the oxygen molar fraction in
the gas phase.

The mass balance of the total inorganic carbon concentration is written
in a similar way to the dissolved oxygen balance as

∂[CT ]

∂t
(x, t) + Vl(t)

∂[CT ]

∂x
(x, t) =

PCO2(x, t)Cb(x, t)

MCO2

+K
lal,CO2(x, t)([CO∗2 ](x, t)− [CO2](x, t)), (D.5)

being [CT ] the total inorganic carbon concentration, K
lal,CO2

is the mass
transfer coefficient for CO2, PCO2 = −PO2 is the carbon dioxide consump-
tion rate, [CO∗2 ] = HCO2PT yCO2 is the dioxide carbon in equilibrium with
the gas phase, HCO2

is the Henry’s constant for carbon dioxide, [CO2] is
the dissolved carbon dioxide and yCO2

is the carbon dioxide molar fraction
in the gas phase.

The gas phase is made of CO2 and O2 molar fractions. The mass balance
for carbon dioxide molar fraction is described as

∂yCO2

∂t
(x, t) + Vg(t)

∂yCO2

∂x
(x, t) =

− Vmol
ε(x, t)

(1− ε(x, t))K
lal,CO2

([CO∗2 ](x, t)− [CO2](x, t)), (D.6)
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where Vg = Qg/(Aε) is the gas phase velocity (control variable), Qg is the
volumetric flow rate of the gas, and Vmol the molar volume.

For the oxygen, an analogous mass balance can be established

∂yO2

∂t
(x, t) + Vg(t)

∂yO2

∂x
(x, t) =

− Vmol
ε(x, t)

(1− ε(x, t))K
lal,O2

([O∗2 ](x, t)− [O2](x, t)). (D.7)

The boundary conditions for model (D.1)-(D.7) are given by

Cb(0, t) = Cb,out(t), [O2](0, t) = [O2]out(t), [CT ](0, t) = [CT ]out(t),

yCO2
(0, t) = yCO2 in(t), yCO2

(0, t) = yCO2 in(t), (D.8)

where Cb,out, [O2]out and [CT ]out are the biomass, dissolved oxygen and
total inorganic carbon concentration at the outlet of the bubble column,
respectively. These values are obtained from the bubble model described
in Section D.2.2. yCO2 in and yO2 in are the injection of molar fraction of
CO2 and O2, respectively.

Equations (D.1)-(D.7) describe the photobioreactor state equations. In
addition, a relationship between the total inorganic carbon concentration
and the dissolved carbon dioxide in the culture is also needed for system
closure. Such relationship is described as follows.

In microalgal cultures, the changes in pH are due mainly to consump-
tion of carbon dioxide; pH variations due to consumption of other nutrients
and degradation of excreted metabolites can be neglected [80]. As dioxide
carbon in gas phase dissolves in the media, it breaks down into different
species, namely dissolved dioxide carbon, CO2, carbonic acid H2CO3, bi-
carbonate, HCO−3 , and carbonate CO2−

3 . This chemical process can be
described as follows. First, CO2 reacts with water to yield carbonic acid

CO2 + H2O↔ H2CO3. (D.9)

H2CO3 is a weak acid and it dissociates, yielding HCO−3 ,

H2CO3 ↔ H+ + HCO−3 . (D.10)

The reaction equilibrium (D.10) can be described by an equilibrium
constant K1, expressed as

K1 =
[HCO−3 ][H+]

[CO2]
= 10−6.381. (D.11)
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The HCO−3 that is produced will further dissociate as

HCO−3 ↔ H+ + CO2−
3 (D.12)

The dissociation (D.12) can also be described by a second equilibrium
constant, K2, such that

K2 =
[CO2−

3 ][H+]

[HCO−3 ]
= 10−10.377. (D.13)

Finally, the water dissociates according to

H2O↔ OH− + H+, (D.14)

which is described by the following equilibrium constant

Kw = [OH−] · [H+] = 10−14. (D.15)

The [H+] concentration is generally given as a pH value, defined as the
negative logarithm, pH= −log10[H+].

The total inorganic carbon is equal to the sum of inorganic carbon
species,

[CT ] = [CO2] + [HCO−3 ] + [CO2−
3 ]. (D.16)

Combining (D.11), (D.13) and (D.16), it is obtained

[CT ] =

(
1 +

K1

[H+]
+
K1K2

[H+]2

)
[CO2], (D.17)

∂[CT ]

∂t
=

(
1 +

K1

[H+]
+
K1K2

[H+]2

)
∂[CO2]

∂t
−
(

K1

[H+]2
+

2K1K2

[H+]3

)
[CO2]

∂[H+]

∂t
.

(D.18)

In addition, the following electroneutrality constraint must be satisfied

∂[H+]

∂t
+
∂[Cat+]

∂t
=
∂[OH−]

∂t
+
∂[HCO−3 ]

∂t
+ 2

∂[CO2−
3 ]

∂t
+
∂[An−]

∂t
.

(D.19)

Assuming constant concentrations of cations, [Cat+], and anions, [An−],
equation (D.19) is rewritten as

∂[H+]

∂t
=

K1

[H+] + 2K1K2

[H+]3

1 + Kw
[H+]2 + K1[CO2]

[H+]2 + 2K1K2

[H+]3

∂[CO2]

∂t
. (D.20)
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The boundary conditions for [H+] and [CO2] are given by

[H+](0, t) = [H+]out(t), [CO2](0, t) = [CO2]out(t), (D.21)

where [H+]out and [CO2]out are the concentrations of [H+] and [CO2] at
the outlet of the bubble column, respectively. These values are obtained
from the equations of the bubble column, presented in Section D.2.2.

If the chemical equilibria between the different forms are disturbed - as
when dioxide carbon is added to the culture, removed in photosynthesis, or
vented to the air - the reaction will shift one way or the other in an attempt
to reestablish equilibrium. For example, when CO2 is added to the system
the H+ increases following the production of H2CO3, as can be seen in
(D.9) and (D.10). So, the pH decreases and consequently the total inorganic
carbon rises. Conversely, when CO2 is removed during photosyntheis or
lost to the air by diffusion, the reactions shift to the left in (D.9) and
(D.10). The H+ concentration declines, but the CO2−

3 concentration slightly
rises, preventing a rise in pH and a decrease in the total inorganic carbon
concentration.

Figure D.2 shows the distribution of the forms of inorganic carbon in
the photobioreactor with changes in pH in steady state. Note that at pH
6.5-10.5, bicarbonate is the most abundant form. CO2 dominates at low
pH, while carbonate dominates at high pH values.

As can be noted, if the pH is at an equilibrium point, so the total inor-
ganic carbon, with its inorganic carbons species, is at equilibrium too. In
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Figure D.2: Distribution of the forms of inorganic carbon in the photobiore-
actor with changes in pH.
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the case treated in this thesis, carbon consumed by microalgae is compen-
sated by supplying CO2 to maintain pH and, as a consequence, a desired
level of inorganic carbon is achieved. Based on this hypothesis, in this work
the total inorganic carbon is used as output variable to control the pH.

In sum, the tubular photobioreactor model is given by equations (D.1)-
(D.8), (D.18) and (D.20)-(D.21), which can be written in the following
compact form

∂z

∂t
+ A(z(x, t))

∂z

∂x
= G(z(x, t)),

z(0, t) = ϕ(t), (D.22)

where z = [Cb [O2] [CT ] [CO2] [H+] yCO2
yO2

]T , A is a 7 × 7 matrix
and G is a vector function.

D.2.2 Bubble column mathematical model

For the bubble column, a similar formulation can be applied taking into
account several considerations [79]. Moreover, the dilution process must be
added to the liquid phase balances. Then, for the biomass concentration
the following mass balance can be established:

Vliq,c(t)
dCb,out
dt

(t) +Qliq,c(t)(Cb,out(t)− Cb,in(t)) =

Vliq,c(t)PO2
(t)Cb,outYp/x −Qm(t)Cb,out(t), (D.23)

where the subscript c refers to the bubble column, Cb,in is the inlet biomass
concentration (solar receiver output), Vliq,c is the liquid volume in the
column and Qm is the volumetric flow rate of culture medium. The oxygen
production rate per biomass mass unit, PO2

is calculated in the same way
as the external loop, which is given by (D.2)-(D.3).

In the case of the total inorganic carbon, the relationship between the
inlet medium [CT ]m and the outlet overflow is included in the mass balance,
resulting in

Vliq,c(t)
d[CT ]out

dt
(t) +Qliq,c(t)([CT ]out(t)− [CT ]in(t)) =

Vliq,c(t)
PCO2

(t)Cb,out(t)

MCO2

+ Vliq,c(t)Klal,CO2c(t)([CO
∗
2 ](t)− [CO2](t))lm−

Qm(t)([CT ]m − [CT ]out(t)), (D.24)

where [CT ]in(t) is the total inorganic carbon at the inlet of the bubble
column. The mass transfer coefficient for CO2 in the bubble column is
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defined as Klal,CO2c, [CT ]m is the inorganic carbon concentration in the
culture medium, and ( · )lm is the logarithm mean driving force.

Regarding the dissolved oxygen, a similar procedure is evaluated to
obtain the following mass balance:

d[O2]out
dt

(t)+Qliq,c(t)([O2]out(t)−[O2]in(t)) = +Vliq,c(t)
PO2(t)[Cb]out(t)

MO2

+ Vliq,c(t)Klal,O2c(t)([O
∗
2 ](t)− [O2](t))lm −Qm(t)([O2]m − [O2]out(t)),

(D.25)

where [O2]in(t) is the oxygen concentrations in the liquid phase at the inlet
of the bubble column. Klal,O2c is the volumetric gas-liquid mass transfer
coefficient for oxygen in the bubble column, and [O2]m is the dissolved
oxygen in the culture medium.

Regarding the gas phase, the mass balance for the O2 to N2 molar ratio
for the bubble column is described by

Vgas,c(t)
dYO2,out

dt
(t) +

FN2,c
(t)Vmol

yN2,c

(YO2,out
(t)− YO2,in(t)) =

− Vliq,c(t)Vmol
yN2,c

Klal,O2c(t)([O
∗
2 ](t)− [O2](t))lm, (D.26)

where Vgas,c(t) is the gas volume of the column, and yN2,c is the nitrogen
molar fraction in the bubble column. The O2 to N2 molar ratio in the
gas phase is defined at the inlet, YO2,in, and outlet, YO2,out, of the bubble
column.

The carbon dioxide to nitrogen molar ratio is regarded as the following
mass balance:

Vgas,c(t)
dYCO2,out

dt
(t) +

FN2,c
(t)Vmol

yN2,c

(YCO2,out
(t)− YCO2,in(t)) =

− Vliq,c(t)Vmol
yN2,c

Klal,CO2c(t)([CO
∗
2 ](t)− [CO2](t))lm, (D.27)

where YCO2,in
and YCO2,out

is the carbon dioxide to nitrogen molar ratio
in the inlet and outlet of the bubble column, respectively. The relationship
between the molar fraction and the molar ratio is known to be defined as

y =
Y

1 + Y
.

As well as the mathematical model of the solar receiver, a relationship
between the total inorganic carbon and dissolved carbon dioxide in the
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bubble column must be established. This result in the following equations:

d[CT ]out
dt

(t) =

(
1 +

K1

[H+]out(t)
+

K1K2

[H+]2out(t)

)
d[CO2]out

dt
(t)−

[CO2]out(t)

(
K1

[H+]2out(t) + 2K1K2

[H+]3out(t)

)
d[H+]out

dt
(t), (D.28)

and

d[H+]out
dt

(t) =

K1

[H+]out(t)
+ 2K1K2

[H+]3out(t)

1 + Kw
[H+]2out(t)

+ K1[CO2]out(t)
[H+]2out(t)

+ 2 K1K2

[H+]3out(t)

d[CO2]out
dt

(t).

(D.29)

Equations (D.23)-(D.29) can be rewritten as

dE

dt
(t) = ψ(E(t)) + B(E(t))Qm(t), (D.30)

where E , [Cb,out [CT ]out [O2]out YO2,out
YCO2,out

[CO2] [H+]]T is the
state vector, and ψ(E(t)) and B(E(t)) are vector functions with appropri-
ated dimensions.

D.3 Model validation

The calibration and validation of the system were performed by comparison
of the real data with the simulation responses obtained using estimated
parameter values. These parameter values (see Table D.2) were determined
by an optimization algorithm which minimizes the ISE (Integral of Squared
Error) criterion [40, 64].

Table D.2: Photobioreactor model parameters [40, 64].

Parameters Description Value and units
Ac Cross-sectional area of the column 0.1257 m2

Al Cross-sectional area of the loop 0.0055 m2

B1 Preexponential factor 2.4098
B2 Preexponential factor 533.009
C0 Drift flux model parameter 0.996
C1 Activation energy 6.2684
C2 Activation energy 68.8062
[CT ]m total inorganic carbon in medium 8 mol/m3
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Table D.2 – (continued)
Parameters Description Value and units
dt,c total column diameter 0.4 m
dt,l total loop diameter 0.084 m
HCO2 Henry’s const. for carbon dioxide 38.36 mol/

(atm m3)
HO2

Henry’s const. for oxygen 1.07 mol/
(atm m3)

Ka Extinction coefficient 133.0324 m2/
kg

KCO2,c
Transfer coeff. const. for CO2 0.91
in column

KCO2,l
Transfer coeff. const. for CO2 0.91
in solar receiver

KO2,c Transfer coeff. const. for O2 0.91
in column

KO2,l
Transfer coeff. const. for O2 0.91
in solar receiver

Kl Form parameter 173.9504
µE/(m2 s)

KO2 Oxygen inhibition constant 0.7202 mol/
m3

Lc Length of column 3.2 m
Ll Length of loop 400 m
m Form parameter 0.0015
MCO2 Molecular weight of CO2 32 g/mol
MO2 Molecular weight of O2 44 g/mol
n Form exponent 0.9779
[O2]m Dissolved oxygen in medium 0.2812 mol/m3

PO2,max Maximum photosynthesis rate 4.37× 105 kg

of O2/(kg s)
PT Total pressure 1 atm
r Respiration factor 0.01
R gas constant 8.31 J K/mol
Sc Column area 4.0212 m2

Yo/x Biomass yield coefficient 0.9713 kg of O2

z Form parameter 5.4333
αc Distribution solar factor for 0.1052

bubble column
αl Distribution solar factor for 0.9725

solar receiver
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Figure D.3: Validation results: simulated and experimental data of dissolved
oxygen (DO) concentration, pH, and biomass concentration as a function
of CO2 injection and solar radiation.

Figure D.3 shows the results for the validation process. For the valida-
tion procedure we considered the photobioreactor operating in continuous
mode with a dilution rate of 0.34 L/day, circulation velocity of 1 m/s and
volumetric flow of 140 L/min at the bubble column. Regarding CO2 injec-
tions, a sequence of pulses were used, adapting its amplitude and weight
according to the period of day to keep the pH value in an appropriate and
secure range.

The mathematical model reproduces the system dynamics with a mean
error of 4.7 % for the dissolved oxygen measured at the output of the
external loop, and a mean error of 5.4% for the dissolved oxygen measured
at the output of the bubble column. On the other hand, the mean error
between the real pH and the simulated pH was 1.4% at the output of the
external loop. These results show that the mathematical model reproduces
the system dynamics for these operating conditions.





Appendix E

Optimization of biomass
production in outdoor tubular
photobioreactors

In this appendix we are concerned with microalgal biomass production
optimization in outdoor tubular photobioreactors. The main purpose of
such optimization system is to calculate the culture medium flow rate in
order to maximize the biomass production over a determined period of time.
Two different methods are proposed in this work: (i) an optimal and (ii) a
near-optimal strategy. Simulation and experimental results allow the user to
evaluate the effectiveness of the biomass production optimization strategies
proposed, compared with a classical harvesting strategy. The appendix
is organized as follows. In Section E.1 we describe the photobioreactor
optimization problem. Section E.2 outlines the optimal biomass production
strategy. The near-optimal strategy is shown in Section E.3. Simulation and
experimental results obtained with the proposed optimization strategies
are shown in Section E.4.

E.1 The photobioreactor optimization problem

We consider the optimization of the biomass long term production under
the influence of day/night cycles. This optimization problem consists to find
the time evolution of the culture medium flow rate, maximizing the total
quantity of biomass produced and diluted out of the reactor, over a period
of time. The photobioreactor used to test the optimization methodology
is located at Palmerillas Experimental Station, property of CAJAMAR
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foundation (Almeŕıa, Spain). The description of this system is given in
Appendix D.

A steady state analysis of the dynamic model presented in Appendix D
shows that QmCb,out = Vliq,cPO2

Cb,outYp/x+Qliq,c(Cb,in−Cb,out), in which
the term (Cb,in − Cb,out) can be considered zero, since in the steady-state
regime, the biomass concentration at the inlet and outlet of the bubble
column is the same. Therefore, maximizing Qm

Vliq,c
Cb,out, amounts to maxi-

mizing PO2
Cb,outYp/x which is the biomass productivity and is a concave

function for Cb,out. It follows that the solution of

d

dCb,out
(PO2Cb,outYp/x) = 0,

forCb,out is the optimal biomass concentration,C∗b,out, andQ∗m = Vliq,cP
∗
O2
×

Yp/x yields the optimal medium flow rate. Note that PO2Cb,outYp/x is in-
creasing for Cb,out ≤ C∗b,out and decreasing for Cb,out ≥ C∗b,out. Also note
that PO2

is a function of Cb,out (see Appendix D).

In a constant light environment, the optimal medium flow rate, Q∗m,
computed above is a positive constant value since the photosynthesis rate is
always greater than the respiration rate, i.e., the therm rPO2max

in (D.2). In
this case it is possible to attain an instantaneous biomass output flow opti-
mization. However, in an environment with varying light it is not possible to
settle the medium flow rate for an instantaneous productivity optimization.
For example, during the night there is no algal growth, only respiration (see
(D.2)), so that harvesting during this period would result in loss of biomass.
For these systems, the photobioreactor operating in the long term must
be considered to solve the biomass production optimization problem [81].
This is the case for the outdoor tubular photobioreactor studied. Hence,
the next sections are dedicated to present an optimal and a near-optimal
strategy to solve the biomass production optimization problem for outdoor
tubular photobiorectors.

E.2 Optimal control for biomass production

The objective of the optimal control strategy is to find the time evolution
of the culture medium flow rate, Qm, that maximizes a given cost function
J . This cost function considers the daily biomass production, that is, the
biomass produced and diluted out of the reactor over the period of one day.
Let tf = 24 h be the period of time, then the following optimal control
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problem is obtained

max
Qm(t)

J (Qm(t)) = max
Qm(t)

∫ tf

0

D(Qm(t))Cb,out(t) dt, (E.1)

subject to

dE

dt
(t) = ψ(E(t)) + B(E(t))Qm(t), (E.2)

∂H

∂t
(x, t) + A(H(x, t))

∂H

∂x
(x, t) = φ(H(x, t)), (E.3)

H(t0, x) = H0(x), E(t0) = E0, (E.4)

0 ≤ Qm(t) ≤ 10, (E.5)

Cb,out(tf ) = Cb,out(t0), (E.6)

where D , Qm
Vliq

is the dilution rate, being Vliq = Vliq,l + Vliq,c, and H0(x)

and E0 are the initial conditions for the solar receiver and bubble column
model, respectively. The term DCb,out represents the biomass productivity.
Constraint (E.5) refers to valve operating conditions (the valve flow range
goes from 0 to 10 L/min), while the terminal constraint (E.6) is included
to guarantee the same operating point of the photobioreactor every day.

To solve the optimal control problem (E.1)-(E.6) there are basically two
methods: (i) the Pontryagin’s maximum principle and; (ii) direct methods
(numerical optimization). When the mathematical model involved is not
complex, the Pontryagin’s maximum principle is straightforward to be used
and analytic solutions can be provided. However, when the system is com-
plex, as the case treated here, it should be hard to derive explicit solutions.
Hence, methods based on numerical optimization are more suitable for
these cases.

The numerical optimization scheme used in this work is based on the
control parametrization concept [82]. In this technique, the control variable,
Qm, is discretized in M constant piece-wise values along the control horizon
[t0, tf ], such that τk ∈ [t0, tf ], k = 1, . . . ,M , is the mesh or grid points
with

t0 = τ1 < . . . < τM−1 < τM = tf . (E.7)

The discretization (E.7) is assumed to be equidistant for the sake of
simplicity, where

h ,
tf − t0
M − 1

, τi = t0 + (i− 1)h, i = 1, ...,M. (E.8)
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Therefore, the control vector in the grid points, is defined as

U , [Qm(1) Qm(2) · · · Qm(M)]
T
. (E.9)

Besides the control variable discretization, the photobioreactor math-
ematical model (D.22) and (D.30) must also be discretized. The discrete
approximation used in this work implies in a finite difference Euler scheme
for time and space. The spatial partial derivative, in a given time instant,
is approximated by

∂H

∂x
(x, t) =

H(j, t)−H(j − 1, t)

∆x
, (E.10)

where ∆x = L/S is the spatial derivative discretization length, being S the
number of points, and j = 1, 2, ..., S the j-th spatial volume.

Regarding the time derivative, we use the following approximations for
(D.22) and (D.30):

dH

dt
(x, t) =

H(j, k + 1)−H(j, k)

h
,

dE

dt
(t) =

E(k + 1)− E(k)

h
. (E.11)

Note that using the time and spatial derivative approximations (E.10)-
(E.11), the models (D.22) and (D.30) are transformed into discrete algebraic
expressions. For sake of simplicity, the discrete algebraic expressions of
(D.22) and (D.30) are written in a compact form as

X (k + 1) = X (k) + ϑ(X (k), Qm(k)), (E.12)

where

X (k) =

(
H(j, k)

E(k)

)
,

ϑ = h

(
A(H(j, k))

H(j, k)−H(j − 1, k)

∆x
+ φ(H(j, k))

ψ(k)(E(k)) + B(E(k))Qm(k)

)
.

Consider the optimization variables

z , [X (1) X (2) ... X (M) Qm(1) Qm(2) ... Qm(M)]T ∈ RNz ,
(E.13)

where Nz = (8S + 8)M .
The optimal control problem (E.1)-(E.6) is replaced by the following

discretized control problem in the form of a NLP problem with equality
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and inequality constraints

max
z

J (z) = max
z

M∑
k=1

D(Qm(k))Cb,out(k)

subject to

X (k + 1) = X (k) + ϑ(X (k), Qm(k)),

X (0) = ξ0,

0 ≤ Qm(k) ≤ 10,

Cb,out(M) = Cb,out(0), (E.14)

where ξ0 , [H0(j) E0]T , j = 1, 2, . . . , S, is the initial condition of (E.12).
Note that problem (E.14) has a large number of optimization variables,

(7S + 8)M , and constraints, (7S + 10)M + 1. Even so, this problem can be
efficiently solved if the sparse structure of the Jacobian and the Hessian of
the associated Lagrangian are taking into account [82–84].

Nevertheless, the dimension of (E.14) can be reduced if the control
variable is treated as the only optimization variable, while the state variables
are obtained recursively from the state equation. This approach is called
recursive approach [83]. Using the recursive approach, the optimization
variables are rewritten as

z , [Qm(1) Qm(2) ... Qm(M)]T ∈ RM , (E.15)

and the state variables from (E.12) are computed recursively as functions
of the control variable with initial condition X (0) = ξ0. In this context,
we obtain the following biomass production maximization problem:

max
z

J (z) = max
z

M∑
k=1

D(Qm(k))Cb,out(k) (E.16)

subject to

0 ≤ Qm(k) ≤ 10, (E.17)

Cb,out(M) = Cb,out(0). (E.18)

Problem (E.16)-(E.18) results in a dense structure in the Hessian of the
Lagrangian, since the number of optimization variables were reduced and
50% of the elements in the Jacobian of the constraints are zero [84]. In this
work, we use the SQP algorithm to solve this problem [83, 85].

The SQP algorithm is an iterative algorithm for nonlinear program-
ming. At each step, a quadratic sub-problem based on a second-order
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Taylor approximation of the Lagrangian function of problem (E.16)-(E.18)
and the linearization of the cost function (E.16) with respect to the con-
straints (E.17)-(E.18) is solved. The solution of the quadratic sub-problem
is then used to obtain the search direction where the cost function is maxi-
mized. Moreover, to enforce convergence from any initial point, a line search
method with a merit function is used.

The interested reader can find convergence results of approximations
to optimal control problems in [86]. In next subsections it is stated the
first-order necessary conditions and second-order sufficient conditions for
optimality of (E.16)-(E.18).

E.2.1 First-order necessary Conditions for optimality

Consider the final constraint (E.18) expressed as

ΦM (XM ) = Cb,out(M)− Cb,out(0) = 0, (E.19)

and the box constraint (E.17) rewritten as two inequalities constraints
given by

g(Qm(k)) =

(
Qm(k)− 10 ≤ 0
−Qm(k) ≤ 0

)
, for k = 1, . . . , M. (E.20)

Then, the Lagrangian function for the NLP problem (E.16)-(E.18) can
be introduced as

L (z, ρM , λ) = J (z) + ρMΦM (XM ) +

M∑
k=1

(λ(k))
T
g(Qm(k)), (E.21)

where L : RNz×R×R2M → R, ρM ∈ R,λ(k) ∈ R2,λ = (λ(1) . . . λ(M))
T ∈

R2M .

The first-order necessary condition of optimality for the problem (E.16)-
(E.18) are given by the KKT conditions, since (E.16)-(E.18) is a finite-
dimensional nonlinear mathematical program. This conditions are given
by

∇zL(z, ρM , λ) = 0, (λ(k))
T
g(Qm(k)), k = 2, . . . , M − 1, (E.22)

where the subscript z denotes the partial derivative with respect to z.



E.2 Optimal control for biomass production 151

E.2.2 Second-order sufficient conditions for optimality

In this section, second-order sufficient conditions for optimality of problem
(E.16)-(E.18) are shown. Consider the following notation

G(z) = (G1(z), . . . , GNc(z)) , (E.23)

where G(z) is the collection of functions defining the equality and inequality
constraints (E.17)-(E.18), and Ne = 1, and Nc = Ne + 2M .

Then, problem (E.16)-(E.18) is rewritten as

max
z

J (z) = max
z

M∑
k=1

D(Qm(k))Cb,out(k) (E.24)

subject to

G1(z) = 0, (E.25)

Gi(z) ≤ 0, for i = Ne + 1, . . . , Nc, (E.26)

and its associated Lagrangian function is given by

L (z, µ) = J (z) + µTG(z), (E.27)

where µ ∈ RNc .
A numerical check for second-order sufficient condition for optimality

is then evaluated as follows. Let z̄ be an optimal solution for (E.24)-(E.26)
with associated Lagrange multiplier µ satisfying the KKT conditions. Also,
consider the set of active indexes defined by Ia , {i ∈ {1, ..., Nc}|Gi(z̄) = 0}
and let ma , #Ia. Denote Ga , (Gi)i∈Ia as the active constraints and
µa ∈ Rma the corresponding Lagrange multiplier to active constraints.
Then, the second-order sufficient condition can be stated under the following
assumption [87].

Assumption E.1. Assume that

1. J (z), G(z) are twice continuously differentiable with respect to z;

2. the gradients in ∇zGa are linearly independent, i.e., rank(Gaz(z̄)) =
ma;

3. strict complementarity µa of the Lagrange multipliers holds;

4. the Hessian of the Lagrangian is positive definite on Ker(Gaz(z̄)),

vTLzz(z̄,µ)v > 0, ∀v ∈ Ker(∇zGa(z̄)), v 6= 0. (E.28)
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Then z̄ is a local minimum for (E.24)-(E.26).

As shown in [84], a numeric check of the second-order sufficient condition
consists in evaluating the projected Hessian on Ker(∇zGa) and verify if its
eigenvalues are positive.

E.3 Near-optimal strategy

In this section, a near-optimal strategy for biomass production is presented.
From a practical point of view, this strategy is mainly important for those
photobioreactors that are not equipped with a continuous medium valve
or for those cases where the medium valve flow rate cannot be setted in
the values obtained from the optimal strategy described in the previous
section.

The idea of the near-optimal strategy is to simulate the model (D.22)
and (D.30) to compute the initial switching time, t = tin, from Qm(t) = 0
L/min to Qm(t) = 10 L/min, to start the harvesting process, and the
time t = tfn to switch from Qm(t) = 10 L/min to Qm(t) = 0 L/min, to
close the photobioreactor. It must be stressed that the culture medium
flow rate is equal zero if t /∈ [tin, tfn]. For sake of simplicity, in this thesis,
these simulations were performed considering a clear day solar irradiance
model [77], and the process variables adequately regulated in their optimal
operating point.

Figure E.1 shows the surface of daily biomass production, calculated
from the model (D.22) and (D.30) and cost function (E.1), for several
different switching times. The dark blue contour level corresponds to wash
out of the photobioreactor and the dark red contour to maximal daily
production.

As can be seen in Figure E.1, the daily biomass production is constant
along its contour levels, which means that the daily production is mainly
dependent of the total medium injected through the system. Therefore,
it can be concluded from Figure E.1 that a total cumulated flow of 0.23
starting after 17:30 h must bring the biomass productivity close to the
optimal operating point. It must be stressed that the results shown in this
section are mainly valid for the studied photobioreactor. Due to the different
biological system parameters, such as respiration factor, photosynthesis rate,
and the photobioreactors structure, the switching time of the near-optimal
strategy must be studied case by case.
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Figure E.1: Surface of daily biomass production, calculated from the model
(D.22) and (D.30) and cost function (E.1), as a function of the initial
time and final switching time, in local hours. The dark blue contour level
corresponds to wash out of the photobioreactor and the dark red contour
to maximal daily production.

E.4 Results

This section shows simulation and real experiments using the optimization
strategies to maximize the daily biomass production in tubular photo-
bioreactors. First, the optimization strategies were tested and compared by
simulation, where the nonlinear model described in Appendix D was used as
virtual plant. The actual harvesting system, that will be called classic strat-
egy (that is based on photobioreactor design optimization), is also shown
for comparison purposes. Afterwards, the proposed optimization systems
were verified through real experiments on the industrial photobioreactor
described in Appendix D.

E.4.1 Simulation results

The simulations were performed for a period of 1 day, where the solar
irradiance profile was collected from the real photobioreactor. Regarding the
optimal strategy, several simulation tests were made to analyze the influence
of the number of grid points of the control variable in the cost function value.
Numbers greater than 15 did not show a significant change in the value of
the cost function, as can be seen in Table E.1, where M is the number of grid
points, CPU is the computing time in seconds, and ERR denotes the relative
error of the KKT conditions given in (E.22). Furthermore, a numerical check
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Table E.1: Convergence behavior of the tubular photobioreactor optimiza-
tion problem.

M CPU [s] J [kg/m3] ERR
5 3252 0.2407542 2.27× 10−3

10 7591 0.2410867 3.39× 10−4

15 15646 0.2411018 4.74× 10−4

20 21974 0.2411025 4.94× 10−4

30 47498 0.2411035 5.19× 10−4

40 61035 0.2411089 5.35× 10−4

of the projected Hessian was positive definite with υmin = 0.001 as the
smallest eigenvalue for all studied cases. All numerical computations were
performed in a workstation Intel Core i7r @2.00 Gigahertz and 4096 KB
memory cache.

Figure E.2 shows the response of the optimal, near-optimal and classic
strategies for a day with small disturbances in the solar irradiance.

Figure E.2: Simulation results for the classic, near-optimal and optimal
daily biomass production strategies. The graphics show (top) the biomass
concentration at the outlet of the bubble column, Cb,out, (middle) the
medium flow, Qm and (bottom) the solar irradiance profile.
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As can be seen in Fig. E.2 there is no biomass harvesting during the dark
phase of the day cycle for neither of the strategies. This fact is quite obvious
since there is only microalgal respiration during this period and therefore
perform the harvesting would result in loss of biomass. Moreover, using the
optimal strategy the reactor is kept closed until the afternoon, which means
that Cb,out < C∗b,out, as explained in Section E.1. The medium flow changes

from Qm = 0 to Qm = Qm, where 0 < Qm < 10, when Cb,out ≥ C∗b,out
in order to maintain the maximal biomass production. The harvesting
process finish at the night, when a sufficient level of biomass concentration
is reached to satisfy the terminal constraint (E.18).

The total cumulated flow
∫ tf
t0
D(Qm(t))dt of the classical strategy is

0.1820, i.e., 18.2% of the medium has been renewed during the 24 h, per-
formed by the injection of culture medium from 9:00 to 10:00 with a flow
rate of 10 L/min. The resulting daily biomass production for this strategy
is 0.2337 kg/m3. Using the near-optimal strategy the daily biomass pro-
duction was of 0.2488 kg/m3, i.e., an increase of 6.4613% over the classic
harvesting strategy was obtained with total cumulated flow of 0.1577. Fi-
nally, using the optimal strategy proposed in this work, a daily biomass
production of 0.2578 kg/m3 with a total cumulated flow of 0.1629.

The optimal strategy proposed in this work resulted in an increase of
10.3124% over the classic harvesting strategy and an increase of 3.8511%
with respect to the near-optimal strategy. Note that these results are even
more relevant when extrapolated to an industrial level with several photo-
bioreactors in series with a continuous production over all year. Moreover,
using the optimal strategy it is possible to maintain the perennity of the
process due to the terminal constraint. Also note that, although the classic
and near-optimal strategies have guaranteed the perennity of the process
for the specific day shown in Figure E.2, this cannot be ensured for all days
because these strategies do not take into account the process dynamics. In
this context, using the optimal strategy it is possible to prevent that the
culture density be very high and consequently avoid that the culture be
affected by the shadow effect.

Since in real experiments the presence of uncertainties between the
model and real plant may be relevant, a sensitivity analysis with solar irra-

Table E.2: Sensitivity to solar irradiance.
Uncertainty [%] J [kg /m3] φM [kg/m3]

-10 0.2400353 -0.0127

+10 0.2419881 0.0061
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diance uncertainties conditions was developed. Table E.2 summarizes the
sensitivity results. As can be seen the solar irradiance has a low sensitivity
in the cost function and terminal constraint.

E.4.2 Experimental results

This section shows the results obtained when using the classic, near-optimal
and optimal strategies to maximize biomass production in a real tubular
photobioreactor. The experiments have been performed at the plant de-
scribed in Appendix D. All experiments performed consider the pH and
temperature adequately controlled in their optimal operating points. More-
over, the microalgae is continuously aerated to remove the dissolved oxygen
produced during the photosynthesis process.

The harvesting strategies were implemented on an industrial computer
located at the plant facility. A LabVIEW-based software executes the op-
timal, near-optimal or classic harvesting strategies, which are coded in
the Matlab environment. All systems sensors and actuators are connected
to the Compact-FieldPoint unit from National Instruments. It must be
stressed that the biomass concentration is estimated by a turbidity meter,
which was calibrated by comparing biomass concentration values obtained
from laboratory with the signal values obtained from the sensor. Although
this apparatus has a good measurement accuracy, the facility has a high
noise level. In this context, the biomass graphics shown in this section were
treated and filtered for better viewing.

Classic Harvesting Strategy

Figure E.3 shows a representative experimental result of the classic harvest-
ing strategy in the tubular photobioreactor. As can be seen in the upper
graphic of Figure E.3, the biomass concentration operating point was of
1.1 kg/m3 and the solar irradiance was smooth (bottom graphic of Figure
E.3) during the experiment. For this particular day, the classic harvesting
strategy obtains a daily biomass production of 0.2956 kg/m3 with a total
cumulated flow of 0.3061. The mean biomass productivity was estimated
in 2.3976×10−6 kg/(m3·s).

Near-Optimal Harvesting Strategy

The near-optimal harvesting strategy was implemented with the starting
harvesting time t = 18 : 00h and the closing time t = 19 : 05h, resulting in
a total cumulated flow of 0.2485.
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Figure E.3: Experimental result of the classic harvesting strategy being
used at the Palmerillas Experimental Station. The harvesting process starts
around 8:00 h and lasts 1 hour. The total cumulated flow is 0.3061 and the
daily biomass production obtained is 0.2956 kg/m3.

Figure E.4 shows an experimental result obtained with the near-optimal
biomass production strategy. The biomass concentration operating point
was around 1 kg/m3. It can be seen in the bottom graphic of Figure E.4 that
the solar irradiance is smooth along the day. The daily biomass production
obtained from this experiment was 0.2947 kg/m3 and the mean biomass
productivity was estimated in 4.2937×10−6 kg/(m3·s).

Another experiment with the near-optimal strategy is shown in Figure
E.5. As can be seen in the bottom graphic of Figure E.5 there are small
transients in the solar irradiance, due to passing clouds. The daily biomass
production obtained from this experiment was 0.3435 kg/m3 and the mean
biomass productivity was estimated in 3.4000×10−6 kg/(m3·s).

Optimal Harvesting Strategy

The medium flow calculated by the optimal daily biomass production strat-
egy is performed offline. In this way, initial conditions obtained from the real
plant are used in the model (D.22)-(D.30), and the optimization procedure
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Figure E.4: Experimental result of the near-optimal harvesting strategy.
The harvesting process starts around 18:00 h and lasts 1 hour. The total
cumulated flow is 0.2485 and the daily biomass production obtained is
0.2947 kg/m3.

is then applied. The solar irradiance is estimated through a meteorological
model [77]. This model calculates the solar irradiance for a clear day of a
desired location, in this case, Almeŕıa - Spain. Although clear days are not
always a realistic scenario, the slow biomass dynamics and the sensitivity
analysis presented in Table E.2 shown that this solar irradiance model gives
a good model prediction for the optimization system. Moreover, to minimize
the errors between the model and the real system caused by unmodelled
dynamics and unmeasured disturbances, the error e = Cb,out(M)−Cbr (M),
where Cbr(M) is the real biomass concentration value, obtained from the
last sampling time, is summed to the terminal constraint. Note that using
this approach, the optimization system works as a sliding horizon method-
ology. Finally, a PI controller is used in the medium valve to set the flow
rates obtained from the optimizer.

Figure E.6 shows a representative day of the photobioreactor operating
with the optimal biomass production strategy. Note that the biomass oper-
ating point is of 0.5 kg/m3. The system was operating with low cell density
because in this period of the year (summer) the microalga suffers stress and
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Figure E.5: Experimental result of the near-optimal harvesting strategy.
The harvesting process starts around 18:00 h and lasts 1 hour. The total
cumulated flow is 0.2485 and the daily biomass production obtained is
0.3435 kg/m3.

the cells may adhere in the photobioreactor tube wall, due to high tempera-
tures and solar irradiance. For this experiment, a daily biomass production
of 0.0832 kg/m3 was achieved with a total cumulated flow of 0.1737. The
estimated mean biomass productivity is 2.8964×10−6 kg/(m3·s). As can
be noted in the upper graphic of Figure E.6, the final constraint was not
assured due to the unmodelled dynamics and unmeasured disturbances.
The terminal constraint error was of -0.0681 kg/m3. In order to reduce
this error, the optimization problem solved for the next time horizon was
considering this error in the terminal constraint.

The experiment performed in the next day is shown in Figure E.7. Ob-
serve that in this experiment, the culture medium injected in the system
is much lower than the experimental test shown in Figure E.6, as an at-
tempt to fulfill the terminal constraint. It results in a total cumulated flow
of 0.0918, daily biomass production of 0.0392 kg/m3 and mean biomass
productivity of 2.5163×10−6 kg/(m3·s). The terminal constraint error is of
-0.0103 kg/m3, as expected the error was reduced.

The experimental results for all considered days and harvesting strate-
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Figure E.6: Experimental result of the optimal harvesting strategy. The
harvesting process starts around 13:00 h and lasts around 7 hours. The
total cumulated flow is 0.1737 and the daily biomass production obtained
is 0.0832 kg/m3.

gies are summarized in Table E.3. This table shows the total cumulated
flow (TCF), mean biomass productivity (Pb), daily biomass production
(DBP), and the normalized daily biomass production (NDBP). This last
index corresponds to the ratio between daily biomass production and the
integral of the biomass concentration over the time horizon. This index was
calculated to minimize the influence of the system operating point over the
results.

As can be seen in Table E.3, the optimal strategy had worst performance
than the near-optimal strategy. This is due to the fact the photobioreactor
was operating with a low cell density during the experiments to avoid the
shadow effect caused by the adherence of the microalgae cells in the photo-
bioreactor tube wall (typical phenomenon that occurs in the period of the
experiments). Consequently, the biomass growth rate was low during those
days. However, it is expected that the optimal strategy has better perfor-
mance when operating with the same cell density of the other experimental
cases.
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Figure E.7: Experimental result of the optimal harvesting strategy. The
harvesting process starts around 13:00 h and lasts around 9 hour. The
total cumulated flow is 0.0918 and the daily biomass production obtained
is 0.0392 kg/m3.

E.5 Conclusions

In this appendix, the daily biomass production optimization problem in
tubular photobioreactors was studied. To deal with this problem, two strate-
gies were proposed: (i) an optimal biomass production strategy and; (ii) a
near-optimal biomass production strategy. Regarding the optimal biomass
production strategy, a direct optimization method together with the con-
trol parametrization concept was used to solve the nonlinear programming
problem. In the case of the near-optimal strategy, the biomass harvesting
time for a constant medium flow rate value is computed. This calculus is
evaluated directly from the system dynamical model, under real conditions.

Simulation results shown that both strategies proposed in this work
achieved higher biomass production than the classical strategy currently
used in the real plant. In addition, these results also shown that the best
period of time to perform the biomass harvesting process is at the afternoon
till the night, contrary to the classical strategy in which is carried out at the
beginning of the day. For the experimental results, the proposed strategies
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Table E.3: Performance indexes calculated from the response of the experi-
mental results of the classic, near-optimal and optimal strategies.

Strategy Index Day
1 2

TCF 0.3061
Classic Strategy DBP [kg/m3] 0.2956

NDBP 1.9164×10−4

Pb [kg/(m3·s)] 2.3976×10−6

TCF 0.2485 0.2485
Near-optimal DBP [kg/m3] 0.2947 0.3435
Strategy NDBP 2.3028×10−4 2.2765×10−4

Pb [kg/(m3·s)] 4.2937×10−6 3.4000×10−6

TCF 0.1737 0.0918
Optimal Strat- DBP [kg/m3] 0.0832 0.0392
egy NDBP 1.2077×10−4 6.6293×10−5

Pb [kg/(m3·s)] 2.8964×10−6 2.5163×10−6

also shown promising results. However, due to the fact that it is not possible
to reproduce the tests under the same conditions, it is hard to quantify
the improvement obtained in the photobioreactor with such optimization
systems.

Although the evaluation performed in this work is based on a single
tubular photobioreactor, the results can be easily extrapolated to an in-
dustrial level with several photobioreactors in series with a continuous
production. In such case, the benefits are even more visible.


