644 research outputs found

    Automatic object classification for surveillance videos.

    Get PDF
    PhDThe recent popularity of surveillance video systems, specially located in urban scenarios, demands the development of visual techniques for monitoring purposes. A primary step towards intelligent surveillance video systems consists on automatic object classification, which still remains an open research problem and the keystone for the development of more specific applications. Typically, object representation is based on the inherent visual features. However, psychological studies have demonstrated that human beings can routinely categorise objects according to their behaviour. The existing gap in the understanding between the features automatically extracted by a computer, such as appearance-based features, and the concepts unconsciously perceived by human beings but unattainable for machines, or the behaviour features, is most commonly known as semantic gap. Consequently, this thesis proposes to narrow the semantic gap and bring together machine and human understanding towards object classification. Thus, a Surveillance Media Management is proposed to automatically detect and classify objects by analysing the physical properties inherent in their appearance (machine understanding) and the behaviour patterns which require a higher level of understanding (human understanding). Finally, a probabilistic multimodal fusion algorithm bridges the gap performing an automatic classification considering both machine and human understanding. The performance of the proposed Surveillance Media Management framework has been thoroughly evaluated on outdoor surveillance datasets. The experiments conducted demonstrated that the combination of machine and human understanding substantially enhanced the object classification performance. Finally, the inclusion of human reasoning and understanding provides the essential information to bridge the semantic gap towards smart surveillance video systems

    Background Subtraction Methods in Video Streams: A Review

    Get PDF
    Background subtraction is one of the most important parts in image and video processing field. There are some unnecessary parts during the image or video processing, and should be removed, because they lead to more execution time or required memory. Several subtraction methods have been presented for the time being, but find the best-suited method is an issue, which this study is going to address. Furthermore, each process needs to the specific subtraction technique, and knowing this issue helps researchers to achieve faster and higher performance in their research. This paper presents a comparative study of several existing background subtraction methods which have been investigated from simple background subtraction to more complex statistical techniques. The goal of this study is to provide a view of the strengths and drawbacks of the widely used methods. The methods are compared based on their memory requirement, the computational time and their robustness of different videos. Finally, a comparison between the existing methods has been employed with some factors like computational time or memory requirements. It is also hoped that this analysis helps researchers to address the difficulty of selecting the most convenient method for background subtraction

    Cognitive visual tracking and camera control

    Get PDF
    Cognitive visual tracking is the process of observing and understanding the behaviour of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision

    A comprehensive survey of multi-view video summarization

    Full text link
    [EN] There has been an exponential growth in the amount of visual data on a daily basis acquired from single or multi-view surveillance camera networks. This massive amount of data requires efficient mechanisms such as video summarization to ensure that only significant data are reported and the redundancy is reduced. Multi-view video summarization (MVS) is a less redundant and more concise way of providing information from the video content of all the cameras in the form of either keyframes or video segments. This paper presents an overview of the existing strategies proposed for MVS, including their advantages and drawbacks. Our survey covers the genericsteps in MVS, such as the pre-processing of video data, feature extraction, and post-processing followed by summary generation. We also describe the datasets that are available for the evaluation of MVS. Finally, we examine the major current issues related to MVS and put forward the recommendations for future research(1). (C) 2020 Elsevier Ltd. All rights reserved.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2B5B01070067)Hussain, T.; Muhammad, K.; Ding, W.; Lloret, J.; Baik, SW.; De Albuquerque, VHC. (2021). A comprehensive survey of multi-view video summarization. Pattern Recognition. 109:1-15. https://doi.org/10.1016/j.patcog.2020.10756711510

    DETECTION OF PERSONS AND HEIGHT ESTIMATION IN VIDEO SEQUENCE

    Get PDF
    The principal goal of this paper is the design and subsequent development of a solution for visual monitoring of specific area. Monitoring includes detection of movement and detection of person in the video sequence. Further additional information is to be extracted, i.e. the number of persons in the area and the height of subjects. Authors of paper propose own solution based on prior comparative analysis of current works and design mobile solution, where the development board handles all the data processing. Intel Galileo development board was selected. Implementation and subsequent testing proves the hardware and software solution to be fully functional

    Moving object detection and classification using neuro-fuzzy approach

    Get PDF
    Public surveillance monitoring is rapidly finding its way into Intelligent Surveillance System. Street crime is increasing in recent years, which has demanded more reliable and intelligent public surveillance system. In this paper, the ability and the accuracy of an Adaptive Neuro-Fuzzy Inference System (ANFIS) was investigated for the classification of moving objects for street scene applications. The goal of this paper is to classify the moving objects prior to its communal attributes that emphasize on three major processes which are object detection, discriminative feature extraction, and classification of the target. The intended surveillance application would focus on street scene, therefore the target classes of interest are pedestrian, motorcyclist, and car. The adaptive network based on Neuro-fuzzy was independently developed for three output parameters, each of which constitute of three inputs and 27 Sugeno-rules. Extensive experimentation on significant features has been performed and the evaluation performance analysis has been quantitatively conducted on three street scene dataset, which differ in terms of background complexity. Experimental results over a public dataset and our own dataset demonstrate that the proposed technique achieves the performance of 93.1% correct classification for street scene with moving objects, with compared to the solely approaches of neural network or fuzzy
    corecore