3 research outputs found

    Illumination-Based Data Augmentation for Robust Background Subtraction

    Get PDF
    A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In this paper, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly, but also features semantic transformations of illumination which enhance the generalisation of the model. It successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. Such data allows us to effectively train an illumination-invariant deep learning model for BGS. Experimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place

    Background subtraction using spatio-temporal group sparsity recovery

    No full text
    Abstract Background subtraction is a key step in a wide spectrum of video applications, such as object tracking and human behavior analysis. Compressive sensing-based methods, which make little specific assumptions about the background, have recently attracted wide attention in background subtraction. Within the framework of compressive sensing, background subtraction is solved as a decomposition and optimization problem, where the foreground is typically modeled as pixel-wised sparse outliers. However, in real videos, foreground pixels are often not randomly distributed, but instead, group clustered. Moreover, due to costly computational expenses, most compressive sensing-based methods are unable to process frames online. In this paper, we take into account the group properties of foreground signals in both spatial and temporal domains, and propose a greedy pursuit-based method called spatio-temporal group sparsity recovery, which prunes data residues in an iterative process, according to both sparsity and group clustering priors, rather than merely sparsity. Furthermore, a random strategy for background dictionary learning is used to handle complex background variations, while foreground-free training is not required. Finally, we propose a two-pass framework to achieve online processing. The proposed method is validated on multiple challenging video sequences. Experiments demonstrate that our approach effectively works on a wide range of complex scenarios and achieves a state-of-the-art performance with far fewer computations
    corecore