13,915 research outputs found

    Note: An object detection method for active camera

    Get PDF
    To solve the problems caused by a changing background during object detection in active camera, this paper proposes a new method based on SURF (speeded up robust features) and data clustering. The SURF feature points of each image are extracted, and each cluster center is calculated by processing the data clustering of k adjacent frames. Templates for each class are obtained by calculating the histograms within the regions around the center points of the clustering classes. The window of the moving object can be located by finding the region that satisfies the histogram matching result between adjacent frames. Experimental results demonstrate that the proposed method can improve the effectiveness of object detection.Yong Chen, Ronghua Zhang, Lei Shang, and Eric H

    Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    Full text link
    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.Comment: SPIE Real-Time Image and Video Processing Conference 200

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation

    Full text link
    In this work, we propose a novel and efficient method for articulated human pose estimation in videos using a convolutional network architecture, which incorporates both color and motion features. We propose a new human body pose dataset, FLIC-motion, that extends the FLIC dataset with additional motion features. We apply our architecture to this dataset and report significantly better performance than current state-of-the-art pose detection systems

    Intention recognition for gaze controlled robotic minimally invasive laser ablation

    Get PDF
    Eye tracking technology has shown promising results for allowing hands-free control of robotically-mounted cameras and tools. However existing systems present only limited capabilities in allowing the full range of camera motions in a safe, intuitive manner. This paper introduces a framework for the recognition of surgeon intention, allowing activation and control of the camera through natural gaze behaviour. The system is resistant to noise such as blinking, while allowing the surgeon to look away safely at any time. Furthermore, this paper presents a novel approach to control the translation of the camera along its optical axis using a combination of eye tracking and stereo reconstruction. Combining eye tracking and stereo reconstruction allows the system to determine which point in 3D space the user is fixating, enabling a translation of the camera to achieve the optimal viewing distance. In addition, the eye tracking information is used to perform automatic laser targeting for laser ablation. The desired target point of the laser, mounted on a separate robotic arm, is determined with the eye tracking thus removing the need to manually adjust the laser's target point before starting each new ablation. The calibration methodology used to obtain millimetre precision for the laser targeting without the aid of visual servoing is described. Finally, a user study validating the system is presented, showing clear improvement with median task times under half of those of a manually controlled robotic system

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe
    • …
    corecore