906 research outputs found

    A Quantum Observable for the Graph Isomorphism Problem

    Get PDF
    Suppose we are given two graphs on nn vertices. We define an observable in the Hilbert space \Co[(S_n \wr S_2)^m] which returns the answer ``yes'' with certainty if the graphs are isomorphic and ``no'' with probability at least 1−n!/2m1-n!/2^m if the graphs are not isomorphic. We do not know if this observable is efficiently implementable.Comment: 5 pages, no figure

    Defeating classical bit commitments with a quantum computer

    Full text link
    It has been recently shown by Mayers that no bit commitment scheme is secure if the participants have unlimited computational power and technology. However it was noticed that a secure protocol could be obtained by forcing the cheater to perform a measurement. Similar situations had been encountered previously in the design of Quantum Oblivious Transfer. The question is whether a classical bit commitment could be used for this specific purpose. We demonstrate that, surprisingly, classical unconditionally concealing bit commitments do not help.Comment: 13 pages. Supersedes quant-ph/971202

    The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer

    Get PDF
    A quantum computer can efficiently find the order of an element in a group, factors of composite integers, discrete logarithms, stabilisers in Abelian groups, and `hidden' or `unknown' subgroups of Abelian groups. It is already known how to phrase the first four problems as the estimation of eigenvalues of certain unitary operators. Here we show how the solution to the more general Abelian `hidden subgroup problem' can also be described and analysed as such. We then point out how certain instances of these problems can be solved with only one control qubit, or `flying qubits', instead of entire registers of control qubits.Comment: 16 pages, 3 figures, LaTeX2e, to appear in Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communication (Springer-Verlag

    A brief review on the impossibility of quantum bit commitment

    Get PDF
    The desire to obtain an unconditionally secure bit commitment protocol in quantum cryptography was expressed for the first time thirteen years ago. Bit commitment is sufficient in quantum cryptography to realize a variety of applications with unconditional security. In 1993, a quantum bit commitment protocol was proposed together with a security proof. However, a basic flaw in the protocol was discovered by Mayers in 1995 and subsequently by Lo and Chau. Later the result was generalized by Mayers who showed that unconditionally secure bit commitment is impossible. A brief review on quantum bit commitment which focuses on the general impossibility theorem and on recent attempts to bypass this result is provided.Comment: 11 page

    Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics Simulation

    Full text link
    Computational simulation of chemical and biological systems using ab initio molecular dynamics has been a challenge over decades. Researchers have attempted to address the problem with machine learning and fragmentation-based methods, however the two approaches fail to give a satisfactory description of long-range and many-body interactions, respectively. Inspired by fragmentation-based methods, we propose the Long-Short-Range Message-Passing (LSR-MP) framework as a generalization of the existing equivariant graph neural networks (EGNNs) with the intent to incorporate long-range interactions efficiently and effectively. We apply the LSR-MP framework to the recently proposed ViSNet and demonstrate the state-of-the-art results with up to 40%40\% error reduction for molecules in MD22 and Chignolin datasets. Consistent improvements to various EGNNs will also be discussed to illustrate the general applicability and robustness of our LSR-MP framework

    CHEERS: A tool for Correlated Hole-Electron Evolution from Real-time Simulations

    Full text link
    We put forward a practical nonequilibrium Green's function (NEGF) scheme to perform real-time evolutions of many-body interacting systems driven out of equilibrium by external fields. CHEERS is a computational tool to solve the NEGF equation of motion in the so called generalized Kadanoff-Baym ansatz and it can be used for model systems as well as first-principles Hamiltonians. Dynamical correlation (or memory) effects are added to the Hartree-Fock dynamics through a many-body self-energy. Applications to time-dependent quantum transport, time-resolved photoabsorption and other ultrafast phenomena are discussed.Comment: 15 pages, 6 figures, to be published, J. Phys.: Condens. Matter (2018

    Computational Collapse of Quantum State with Application to Oblivious Transfer

    Get PDF
    Quantum 2-party cryptography differs from its classical counterpart in at least one important way: Given black-box access to a perfect commitment scheme there exists a secure 1-2 quantum oblivious transfer. This reduction proposed by Crépeau and Kilian was proved secure against any receiver by Yao, in the case where perfect commitments are used. However, quantum commitments would normally be based on computational assumptions. A natural question therefore arises: What happens to the security of the above reduction when computationally secure commitments are used instead of perfect ones? In this paper, we address the security of 1-2 QOT when computationally binding string commitments are available. In particular, we analyse the security of a primitive called Quantum Measurement Commitment when it is constructed from unconditionally concealing but computationally binding commitments. As measuring a quantum state induces an irreversible collapse, we describe a QMC as an instance of ``computational collapse of a quantum state''. In a QMC a state appears to be collapsed to a polynomial time observer who cannot extract full information about the state without breaking a computational assumption. We reduce the security of QMC to a weak binding criteria for the string commitment. We also show that secure QMCs implies QOT using a straightforward variant of the reduction above

    What are the implications for global value chains when the market shifts from the north to the south?

    Get PDF
    Rapid growth in many low-income economies was fuelled by the insertion of producers into global value chains feeding into high-income northern markets. This paper charts the evolution of financial and economic crisis in the global economy and argues that the likely outcome will be sustained growth in the two very large Asian Driver economies of China and India and stagnation in the historically dominant northern economies. Given the nature of demand in low-income southern economies, it is likely to be reflected in sustained demand for commodities, with other southern economy producers in global value chains being forced into lower levels of value added. Standards are likely to be of considerably reduced significance in value chains feeding into China and India
    • 

    corecore