222 research outputs found

    Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories

    Get PDF
    In this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By conducting the classification of static facial expressions using Support Vector Machine (SVM) with a valid Gaussian kernel on the SPD manifold, we show that deep covariance descriptors are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By performing extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming many recent approaches.Comment: A preliminary version of this work appeared in "Otberdout N, Kacem A, Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159." arXiv admin note: substantial text overlap with arXiv:1805.0386

    Object-Centric Open-Vocabulary Image-Retrieval with Aggregated Features

    Full text link
    The task of open-vocabulary object-centric image retrieval involves the retrieval of images containing a specified object of interest, delineated by an open-set text query. As working on large image datasets becomes standard, solving this task efficiently has gained significant practical importance. Applications include targeted performance analysis of retrieved images using ad-hoc queries and hard example mining during training. Recent advancements in contrastive-based open vocabulary systems have yielded remarkable breakthroughs, facilitating large-scale open vocabulary image retrieval. However, these approaches use a single global embedding per image, thereby constraining the system's ability to retrieve images containing relatively small object instances. Alternatively, incorporating local embeddings from detection pipelines faces scalability challenges, making it unsuitable for retrieval from large databases. In this work, we present a simple yet effective approach to object-centric open-vocabulary image retrieval. Our approach aggregates dense embeddings extracted from CLIP into a compact representation, essentially combining the scalability of image retrieval pipelines with the object identification capabilities of dense detection methods. We show the effectiveness of our scheme to the task by achieving significantly better results than global feature approaches on three datasets, increasing accuracy by up to 15 mAP points. We further integrate our scheme into a large scale retrieval framework and demonstrate our method's advantages in terms of scalability and interpretability.Comment: BMVC 202

    RELLISUR: A Real Low-Light Image Super-Resolution Dataset

    Get PDF
    The RELLISUR dataset contains real low-light low-resolution images paired with normal-light high-resolution reference image counterparts. This dataset aims to fill the gap between low-light image enhancement and low-resolution image enhancement (Super-Resolution (SR)) which is currently only being addressed separately in the literature, even though the visibility of real-world images is often limited by both low-light and low-resolution. The dataset contains 12750 paired images of different resolutions and degrees of low-light illumination, to facilitate learning of deep-learning based models that can perform a direct mapping from degraded images with low visibility to high-quality detail rich images of high resolution

    Emergence of Object Segmentation in Perturbed Generative Models

    Get PDF
    We introduce a novel framework to build a model that can learn how to segment objects from a collection of images without any human annotation. Our method builds on the observation that the location of object segments can be perturbed locally relative to a given background without affecting the realism of a scene. Our approach is to first train a generative model of a layered scene. The layered representation consists of a background image, a foreground image and the mask of the foreground. A composite image is then obtained by overlaying the masked foreground image onto the background. The generative model is trained in an adversarial fashion against a discriminator, which forces the generative model to produce realistic composite images. To force the generator to learn a representation where the foreground layer corresponds to an object, we perturb the output of the generative model by introducing a random shift of both the foreground image and mask relative to the background. Because the generator is unaware of the shift before computing its output, it must produce layered representations that are realistic for any such random perturbation. Finally, we learn to segment an image by defining an autoencoder consisting of an encoder, which we train, and the pre-trained generator as the decoder, which we freeze. The encoder maps an image to a feature vector, which is fed as input to the generator to give a composite image matching the original input image. Because the generator outputs an explicit layered representation of the scene, the encoder learns to detect and segment objects. We demonstrate this framework on real images of several object categories.Comment: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Spotlight presentatio

    Editorial: Special Issue on Machine Vision with Deep Learning

    Get PDF

    ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning

    Full text link
    The state of the art in semantic segmentation is steadily increasing in performance, resulting in more precise and reliable segmentations in many different applications. However, progress is limited by the cost of generating labels for training, which sometimes requires hours of manual labor for a single image. Because of this, semi-supervised methods have been applied to this task, with varying degrees of success. A key challenge is that common augmentations used in semi-supervised classification are less effective for semantic segmentation. We propose a novel data augmentation mechanism called ClassMix, which generates augmentations by mixing unlabelled samples, by leveraging on the network's predictions for respecting object boundaries. We evaluate this augmentation technique on two common semi-supervised semantic segmentation benchmarks, showing that it attains state-of-the-art results. Lastly, we also provide extensive ablation studies comparing different design decisions and training regimes.Comment: This paper has been accepted to WACV202
    • …
    corecore