10,074 research outputs found

    Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering

    Full text link
    We report a Raman scattering investigation of columnar BiFeO3-CoFe2O4 (BFO-CFO) epitaxial thin film nanostructures, where BFO pillars are embedded in a CFO matrix. The feasibility of a strain analysis is illustrated through an investigation of two nanostructures with different BFO-CFO ratios. We show that the CFO matrix presents the same strain state in both nanostructures, while the strain state of the BFO pillars depends on the BFO/CFO ratio with an increasing tensile strain along the out-of-plane direction with decreasing BFO content. Our results demonstrate that Raman scattering allows monitoring strain states in complex 3D multiferroic pillar/matrix composites.Comment: revised version submitted to Appl. Phys. Let

    Induced magnetization in La0.7_{0.7}Sr0.3_{0.3}MnO3_3/BiFeO3_3 superlattices

    Get PDF
    Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75±\pm 25 kA/m at 10 K in a La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO)/BiFeO3_3 superlattice extending from the interface through several atomic layers of the BiFeO3_3 (BFO). The induced magnetization in BFO is explained by density functional theory, where the size of bandgap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.Comment: 5 pages, 4 figures, with Supplemental Materials. To appear in Physical Review Letter

    Spin transfer in ultrathin BiFeO3 film under external electric field

    Full text link
    First-principals calculations show that up-spin and down-spin carriers are accumulating adjacent to opposite surfaces of BiFeO3(BFO) film with applying external bias. The spin carriers are equal in magnitude and opposite in direction, and down-spin carriers move to the direction opposing the external electric field while up-spin ones along the field direction. This novel spin transfer properties make BFO film an intriguing candidate for application in spin capacitor and BFO-based multiferroic field-effect device

    Interfacial effects on the polarization of BiFeO3BiFeO_{3} films

    Full text link
    By considering an interfacial layer between the electrode and the BiFeO3BiFeO_{3}(BFOBFO) layer, the polarization and the hysteresis behavior of BFOBFO film are simulated. It is found that the non-ferroelectric interface will increase the coercive field, and remarkably suppress the polarization of the ultrathin film under low applied fields. Due to the competition between the interfacial effect and the internal compressive stress, the maximum polarization on the P-E loop of a BFOBFO film can be independent on the film thickness under an adequate applied field.Comment: 3 pages, 2 figure

    Polaronic transport induced by competing interfacial magnetic order in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} heterostructure

    Full text link
    Using ultrafast optical spectroscopy, we show that polaronic behavior associated with interfacial antiferromagnetic order is likely the origin of tunable magnetotransport upon switching the ferroelectric polarity in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} (LCMO/BFO) heterostructure. This is revealed through the difference in dynamic spectral weight transfer between LCMO and LCMO/BFO at low temperatures, which indicates that transport in LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases in relatively high magnetic fields due to the increased spin alignment, while no discernible change is found in the LCMO film at low temperatures. These results thus shed new light on the intrinsic mechanisms governing magnetoelectric coupling in this heterostructure, potentially offering a new route to enhancing multiferroic functionality

    A First-Order Logic Formalization of the Industrial Ontology Foundry Signature Using Basic Formal Ontology

    Get PDF
    Basic Formal Ontology (BFO) is a top-level ontology used in hundreds of active projects in scientific and other domains. BFO has been selected to serve as top-level ontology in the Industrial Ontologies Foundry (IOF), an initiative to create a suite of ontologies to support digital manufacturing on the part of representatives from a number of branches of the advanced manufacturing industries. We here present a first draft set of axioms and definitions of an IOF upper ontology descending from BFO. The axiomatization is designed to capture the meanings of terms commonly used in manufacturing and is designed to serve as starting point for the construction of the IOF ontology suite

    Function, Role, and Disposition in Basic Formal Ontology

    Get PDF
    Numerous research groups are now utilizing Basic Formal Ontology (BFO) as an upper-level framework to assist in the organization and integration of biomedical information. This paper provides elucidation of the three BFO categories of function, role, and disposition, and considers two proposed sub-categories of artifactual function and bio-logical function. The motivation is to help advance the coherent treatment of functions, roles, and dispositions, to help provide the potential for more detailed classification, and to shed light on BFO’s general structure and use
    • …
    corecore